RECORD

Within Rall
11420 LUXMANOR RD.
Rockville, Wd.
WH-6-4455
National fustatubs of Health
Bethesda, Md.
Bldg 31 9-A-17
Phone 496-4325

9/18/64
Continnation / Reseach Diery.
Bork 4 ran from 3/4/64-9/17/64

Summary of Contents
$\operatorname{adctal}+\operatorname{pan} 2$
$9 / 21 / 64$
Summarize and review the computations that were set up $9 / 17 / 64$ and sem on $9 / 18 / 64$, which ere getting close to optimal sums suitable for publication.
$64794.8837 \% 8$ compere with $35 \$ 36$ p.90 of Book 4 $33+34$ p. 84 of Bork 4
This is an attempt at decremental doulsitic spike.
. 8837 the imbibition was too strong for pts 7-14 note esothat axoual spike overshoots toostrongly. This means that ROUT C should go bock up to 10 . and will mo the present amon of C less affective.
\therefore for 39 Ty RouT C $=10$. and $\epsilon=0.5$ for cfo $7-14$
also reduce AF POS to. 08 NE $J=1$ for gt $4-14$

$$
C=.4, .5, \cdot 6 \cdots \cdot 1,4
$$

.8838 differed from 37 only in haman I.C. $=0.1$ in dendrites. This made them fire pastier, lit not lugger spites. nexture, ty y .05 for this
Now Series to be 8851 ब.5-2. CRT
$64794.8841 \quad N J D=5$ Active Pesoulny I.C. Blocked $53^{\prime \prime}$ " donltae I.C.
54 toted with $U S A=5, U S D=200$, NSTEP $=10$
55 old 43 with $N J D=10$, be I A doubled I.C.
6479408842 ND $=5$, Pessove Ascending F.C.

$$
\begin{gathered}
56-59 \text { POUTB }=50 \quad I_{R} C_{0} \text { of USA } \text { Q } 5, \text { USO }=200 \text {. } \\
D 1=.02 \quad .
\end{gathered}
$$

9/21/64
Senes 64794.8741,233 +4 coolerkinctico
.8741 NJD $=5$ ective F.C. $_{2} .2, .16, .12, .08, .04,0$ got soma deloy Φ then almons Syanchowouspina

* also got seflected oithochomic
$.8742(5)$ prosre I.C. i. $, \cdot 3, \cdot 4, \cdot 4, \cdot 4, \cdot 3$ mani spinestony metty good bis sot a secound spithe. ned more quench or ROUTB) mohe ROUTB $=40_{0}$
$.8743 N J D=10$ Active
Prettygood (shactrapleation in (3))
.8244 (10) Passove puettrgood lint meals nore queveh

Sotup as 45,46,47,48.
ineoch; micreme ROUTB to 40 ,

$$
\begin{array}{ll}
& \text { NSTEP To } 15 \\
\text { USA }=5, \\
& \text { USD }=200, \\
\text { NPLT }=3 \quad \text { LJZPLT }=3 \\
& \text { IFTEST }=103111
\end{array}
$$

$$
\text { for } N J D=10 \text { ost } 112
$$

estrinate that compritation of $(N T=41)\binom{$ NSEE $\frac{20}{2}}{$ table }$=\frac{90 \mathrm{rec}}{5 \mathrm{sec}}$

$$
\begin{aligned}
& \frac{\text { table }}{\frac{5 s e c}{95}} \\
& \text { fet } 120 \text { for } N D D=10 \\
& N z=14
\end{aligned}
$$

Tureeplots take

IFIEST $=103111$ shoull $\cos \approx 50$ secs

$$
\begin{aligned}
& 45 \text { for NOD }=5 \\
& 65 \text { for NJD }=10
\end{aligned}
$$

$\begin{aligned} \therefore \text { estinate a tatal of obont } 160 \text { secs for a sum woth } N D D & =5 \\ 205 \text { ses } & =10\end{aligned}$
for $N T=41$, NSTEP $=20$, NPLT $=3$.
Homam for NSTEP $=10$, would hane the 90 for NAD $=5$ \& Sose 45

Tine Estimates
Setup $64794.8851 \not 22$ an CRT (deremaide cold.)
Setup following as a Production Rum

142 Whate Qos Tobe 15,743
743 Domin (HCONERESSTANCE EFPET 744
74 IT IF (IFPLVE) $640,645,645$ CONE $=0$
$60 \pi 0696$
4. 645 CONE=1 646 GO 06653
$9 / 21 / 64$
Plan to Modify WXR $794 \mathrm{C} \rightarrow$ WXRY95C
By verisniy estrabell cole of micosperating it in Subrouthin WXP95C

Tour stages (1) (1000) withon extemal shant
(2) $(1100) \rightarrow$ with potentiol divider bit ϵ shantand
(3) (1110) \rightarrow with significart shunt cussenct
(4) (III) \rightarrow radial ke of cone

IFVE $=1111$ neans compute and tobulate all stages 2222 means also plot all stages. 1112 neads do lof ordly lest stage.
WXR95C

$$
\begin{aligned}
& (N T, N Z, K G, N G, J S, J H, N J D, N Z \\
& (K V E, I F V E, I F P L V E, I F A B, V E F, C O R E \text {, }
\end{aligned}
$$

Dimension (PDF, SHCF, RHOSOH, RHOGLM
101 GOTO (ro4, 740, 800, 850, 899), KVE $704-722$ some as in 794 C exppt replace 2.5 by VEF
725 becomes ner milus of 726
727 becomes IFPLVE = IFVE/ 1000

$$
738 \text { RETURN }
$$

$$
\begin{aligned}
& 740 \text { IFVE }=\text { IFVE }-1000 * \text { IFPLVE } \\
& 741 \text { IF (IFVE) } \\
& 744 \text { IFPLVE }=\text { IFVE } 100
\end{aligned}
$$

thanaini proz.
Old 560 to hecome 551 reploce 5601 with 560 in 536 reploce $560 /$ ly 551

$$
\begin{aligned}
& \Rightarrow 67 \text { IF (IFPLVE) } 531,659,531 \\
& 555 \text { IF (IFPLVE-1) } 659,659,560
\end{aligned}
$$

659 CALL NIHLO4 (FCLOCN, JCLOCK)
Whit ougis Tope 15, 999, 5 clock
660 as lofora
661 IF (KVE) $662,662,666$
662 IF (VFF) $663,663,664$
663 VEF $=53.0$
664 VMIN $=-$ VEF
665 VMAX $=1.2 * V E F$
$666_{\text {bub }} K V E=K V E+1$
668 CALL WXR95C (arg

$$
\begin{aligned}
& -60 \text { IF }(4-K V E) 800,670,670 \\
& 668 \text { IF }(4-K V E) 800,669,668
\end{aligned}
$$

$$
9 / 21 / 64
$$

745 IF (PDF) $746,746,747$
746 PDF $=0.25$
$747 \quad F=P D F /(P D F+1$.
750 - like old 750 with PDF added
751 modified \& with F10.5 added OMit VMAX + VMIN
$752-780$ as lefore exept $\left\{\begin{array}{l}\text { JS in place of } 1 \\ -F\end{array}\right.$
781 RETURN
800 IFVE $=$ IFVE $-100 *$ IFPLVE
801 IF (IFVE) 8\%9, 899,802
802 IFPLVE = IFVE/ 10
803607074 4糈3 IF (IFPKVE) $804,804,805$

$$
\begin{aligned}
& 805 \text { IF (SHCF) } 806,806,807 \\
& 806 \text { SHCF }=0.2 \\
& 808 / x=1 / 00 \mathrm{SD} \quad \frac{807}{809} \quad \mathrm{~F}=\mathrm{SHCF} /(\mathrm{SHCF}+1 .) \\
& I F(\text { (JAAB) sfor sto, } 8808 \text { DO } 880 \quad K T=1 \text {, NT } \\
& \text { 860 PA }=F *(V A T Z(K T, J S)-V A T Z(K T, N Z)) \text {. }
\end{aligned}
$$

8

$$
\begin{aligned}
& C A=D A B \text { हान } J Z=N Z \quad A C(J Z) \\
& \text { Sis DOC818 } I=1, N Z \\
& 8156 \text { VATZ }(K T, J Z)=\operatorname{VATZ}(K T, J Z)-C A
\end{aligned}
$$

$8167 \quad C A=C A+D A$

$$
81 / 8 \quad J z=J z-1
$$

8% IF (AB) , 820, 820
same setfor B
STSO Conturve see over

831 Write ODju Tope 15, 832, SHCF
882 Fomat (H Followin VE Conempond to an Extarnal selma 7octor of, Flo. 5
883 RETURN

$$
\begin{aligned}
& 668 \times N=N J \\
& 66 x^{51}=x+x D
\end{aligned}
$$

$$
\begin{aligned}
& 672 B C(J z)=1 F(A B(J z)-A B(J z+1)) \\
& 673 \text { IF (AB) } 674,674,683 \\
& 674 \mathrm{DO} 682 \mathrm{KT}=1, N T \\
& 675 \quad J Z=N L Z \\
& \begin{array}{l}
676 \text { DO } 678 I=1, N L Z \\
677 A C(J Z)=B C(J Z) *(\text { VATZ }(K T, J Z)-V A T Z(k, J Z+1)) \\
678 \text { JZ }=J Z-1
\end{array} \\
& 678 \quad J Z=J Z-1 \\
& 679 \mathrm{JZ}=\mathrm{Ntz} \\
& 680 \text { DO } 682 I=1, N L Z \\
& \operatorname{lig}_{882}^{8} \quad V A T Z(K T, J Z)=A C(J Z)+V A T Z(K T, J Z+1)
\end{aligned}
$$

$660 \mathrm{JZ}=\mathrm{Nz} 859 \quad \mathrm{RHOX}=$ RHOGLM
-
86. DO $866 I=1, N Z$

$$
A B(J z)=1 . / R H O X
$$

$$
\text { Ro RHOX = RHOX }- \text { RRHO }
$$

$$
86 \quad 5 z=5 z-1
$$

$$
\begin{aligned}
& \text { 9/21/64 } \\
& 850 \text { IFVE = IFVE-10* IFPLVE } \\
& 851 \text { IF (IFVE) } 899,899,852 \\
& \text { Goto } 88582 \text { IFPNVE }=\text { IFVE } \\
& 853 \text { IF (RHOSOM) } 854,854,855 \\
& 654 \text { RHO SOM }=1.3 \\
& 855 \text { IF (RHOGLM) } 856,856,857 \\
& \text { ES R RHOGLM }=1.7 \\
& 857 \times \text { = RHO SOM - RHOGLM } \\
& \text { 658-DRHO =XD/NJD }
\end{aligned}
$$

$$
\begin{aligned}
& 528+488,488(2 V 7+3) 72+188
\end{aligned}
$$

$$
\begin{aligned}
& .1=M 0234 \pi+5
\end{aligned}
$$

$$
\begin{aligned}
& \text { क54 } 9 x=0490
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{ccc}
1-56-28 \\
2-2 \\
1-2
\end{array}\right) \\
& \hat{\text { a }} \quad 1-56-52 \text { के है }
\end{aligned}
$$

$$
\begin{aligned}
& (\text { st) }
\end{aligned}
$$

$$
\begin{aligned}
& =(85 \text { सम) } 50 \mathrm{H} \text { E8e }
\end{aligned}
$$

$9 / 21 / 64$

$$
\begin{aligned}
& 682 J z=N z \\
& 683 D O=I=1, N Z Z \\
& 684 A C(J Z+1)=A B \\
& 684 \\
& 683 \text { FF (IFAB) } \\
& 684 \text { smilen fo } B B
\end{aligned}
$$

694 Write chin Tope 15,695 , RHOSOM, RHoGLM 695 Tomin (H 7ollang VE tuchide Conical Reristances for RHOSOH = $=$ F10.5, CH AND for RHOGLM $=$, F10.5 $\operatorname{and} F=$

863

870 DO 871, JZ $=1, N 2 Z$

$$
\begin{aligned}
& 871 \mathrm{AC}(J Z)=D A * B C(J Z) \\
& 872 \mathrm{CA}=\mathrm{J}=\mathrm{J} \\
& 873 \mathrm{JZ}=N z \\
& 874 D 0 \quad 877 \mathrm{I}=1, N z \\
& 875 V A T Z(K T, J Z)=V A T Z(K T, J Z)-C A \\
& 876 \mathrm{CA}=C A+A C(J z-1) \\
& 877 \mathrm{JZ}=J z-1 \\
& 879 \text { IF (IFAB) } 898,880,880
\end{aligned}
$$

$$
(8+4 \times 1)+888)
$$

 $(12097=512.548-1)$ $=-7+0$

$$
\begin{aligned}
& 5 M=56 \quad(80)
\end{aligned}
$$

9/22/64 These cords punched Fodoy
Now complete
Now complete
Cot?
SOBROUTINE WXR95C. (NT,NZ, KG,NG, JH, JH, NJD, NLZ
\times KVE, $F F V E$, IFPLVE, IFAB, CORE,
\times VEF, PDF, SHCF, RHOSOH, RHO GLM
x VATZ, VBTZ, $A B, A C, B B, B C$,
Dinension VATE $(251,14)$, $\operatorname{VBTZ}(251,14)$,

$$
A B(14), A C(14), B B(14), B C(14)
$$

Chsofor ortia munt cond writ onph Tope 15, 204

$$
2441 \text { IF (IFVE) } 245,245,2442
$$

2443 write owjw Tope 15, 92%
926 Fornat ($9 x, 3 H V E F, 7 X, 3 H P D F, 6 *, 4 H$ \rightarrow SHCF, $6 x$, 6 HR RHOSOM, $4 x$, 6HRRHOGLM, 1$)$
2444 Read Suin Tope 1,
$\times 956$, NG, VEF, PDF, SHCF, RHOSOM, RHOGLM,
956 Fonnt (I1, 4x, o5F10.5) CORE
2445 Write enfin Tope 15,
$\times 956$ -
This will pesunt
seploce CORE on card 3 with RSOK different soma
Let RASO = RACT*RSOK
 atela mox

$$
\left(\mu 1 d(x) \pm 18 \gamma_{c}(\mu, \sqrt{2 K})\right. \text { STAY cosisnomict }
$$

$$
(+1) 38,(+1) 88,(+1)) A,(+4) 8 A
$$

TTMursel Niw int
anore eatlyt

$$
\begin{aligned}
& \text { d.SP (2) ene tires dincu EJHS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { M10049, (10800H9, } 72+18 \text {, } 759,-734
\end{aligned}
$$

$$
9 / 22164
$$

\square Coutrolt 91000

$$
\text { og. } \quad .3, .25, .20, .10
$$

64794.8855 got too ming pos olt 0.5 * got nog E (is.ng B)
pham athor / R.K. sult.

- alspoget this wes Possic RK

Qxo coler lametion do thís I fix sulvontians to praveri B gorrgy ing.

Probolly cen menipulte thea with RBFR Tharked woth RBSQ for any goen value of RAOT

Seatep. 58 of Book 4 \& \& . p. 35 gf 600124

$9 / 23 / 64$ Revieror kinetic constants while waiting for recompile of new programs.
Hew $93 \mathrm{C}+94 \mathrm{C}$ compiled OK,
Ti $795^{\circ} \mathrm{C}+95^{\mathrm{C}}$ hod small tensors
Now also necessary to recompile 794 C to who compativa with 93 C a 94 C

| Pozegoof Book 4 | |
| :--- | :---: | :---: |
| Hot | Cool |
| Hat | |

k_{1}	600	400
k_{2}	48×10^{3}	32×10^{3}
k_{3}	40	35
k_{4}	1.	1.
k_{5}	.0416	.0875
k_{6}	10	10

Try		
Hot Med. Cool		
600.	500.	400
1.	1.	1.
100.	80.	75.
30.20.	250	20.
40.	40.	40.
7.5	7.5	7.5
60.	50	40.
.1	.1	1

600	500	400.
6×10^{4}	4×10^{4}	3×10^{4}
40.	40.	40.
$2 .-3$.	2.	2.
.05 .033	.05	.05
7.5	7.5	7.5

Nothat QB could be doubled.
Rout conte reduced
कW fit the earlier good Combinations.

\qquad
Entracellular Sequence
$K V E=1 \quad V E$ with zero shmi condurtouce
$K N E=2 \quad$ with shnt ffetor lif without pot dicrider this conke skipped by usniz O intu tumbede Tdizit of IFVE
$K V E=3$ Auclubes oppet of comical resistance
$K V E=4$ Superimfose potantirl divoiber affect.
IFVE $=2222$ man compute, tableto + plot all porsstages
$=1001$ mems compunte and tabulate only 151 thart stage

9/28/64 Revien the newr rums.
$64795.900 / \$ 243$ reveoled Trabble in Subromatine Oggument

 2223 occur only one $K T$ stop sooner.

An loth coses the dentritic spthe was neerly synchoress
These are witht BEB I.C. $=.25 \quad .2$.15 . 1 .05 Minctīcount5. 600., 1., 200., 25., 40., 7.5, 50., 0.1
64795.9006 forist completely successful full eythacelular sum samekincticoses dore, lat with I.C. $=.3, \cdot 25, \cdot 2, .1,0,0$ smonpechat perifthote
$K T=17 \quad K T=19$
The sptracelulars are acceptable, lnt neg peek amplitude $=-1.2$ pos deele

$$
0.8
$$

$K T=22$ Thetime of The surface neg. does comaisle with inflection point of the intacelleler spithe at soma, rather
$K T=19$ Thon peak of peroph intracellulor
$9 / 28 / 64$
64795.9007 same es . 9006 exopt that

$$
(9 / 25 / 64) \quad \text { RSOK }=1.5
$$

sounpeoth perophpech

$$
K T=15 \quad K T=17
$$

compertinith 17*19
abo shippriey shin cunery of cerisence worked.

Then, on $9 / 2564$ set up $\frac{(64295.9008,9,10,11}{\text { ant } 64794.8855}$
\rightarrow togetantine 4 passive with $N J D=5 \% 10$
tumpoitend Changs: Reduced POUTC to 5.
Also made cooler" kinetios for 10 o 11 active with $400.1 ., 75 ., 20.440 .5 .540 ., 1$ coot anmes hot 600., 1., 100., 25., 40., 5., 50., :1 hat But woticed that so-celled cooles binctis did not propeasete moseslowly
ie. Fork longer for spitu to zech peote then prop. as well bort
then prop. as well/
perheyps becouse lager ove ofspithe provides leotter fleding of wat ypt.

Want heye doep, mo emea roop.zprte
cpt 9
KTころ
B1 $=$ ampl. 475

29
.474

- cen ewo bo, chard wert

$$
\begin{aligned}
& K= 12,14,07,39 \\
& .915, .918, .865, .927
\end{aligned}
$$

Cooksas turgh-t wall aflect
$9 / 28 / 64$
64795.9008 parnze denbites
hot kinatics, NJD $=5$

puek Cot. 1	2	3	4	
KT	6	9	12	23
anple	.941	.942	.930	.787

This sum is god nough for a complete suT=8!
(see p.
However, con dxo explore with lers I.C. $+\varepsilon$
$c_{\text {perhepop Plat } 0.1 \text { prisonvald }}$

$$
+8=0.05 \text { fa } \quad \cdots
$$

KT	6	$9^{.9021}$	11
and	.942	945	.930

Coneld dofuble RBSQ
(b) another with $B=0.1$
(c) another without stimans to check back ground.
64795.9009 same with NJD $=10$
$K T=6,10,13,>41$ got too und soma beloy $.934, .934, .916$,?
6, 9,12, 41 needs nore oomphe tryobone. RBSSP $=2$
64795.9010 acthie deulites with coolknisitico NSD $=5$ got synchrours denlicie

$$
\begin{aligned}
& k T=10,13,16,32 \text { dperiph } 32 \\
& .909, .909, .857, .939 \quad .951
\end{aligned}
$$

<64795.9011 same worth NJD $=10$
soma dely too long.

$$
\begin{aligned}
& \text { Redo } 22,23+24 \text { with NT }=51 \\
& \text { altogether }
\end{aligned}
$$

$$
+1.0+68+2+2 y
$$

$$
2+20.0=8 t
$$

$$
12892+50+2.5
$$

 ? dip: pep. tep.
$x+20+20+3+$. $5-200+5$

xax

9/28/64
set up 64795.9015 same andine 9008 S.in IAFEST $=0$
Timesiot.

$$
-300] 313
$$

$$
\begin{aligned}
& \text { IFVE }=212 \\
& N P L T=3 \\
& N G=2 \\
& N T=81
\end{aligned}
$$

aboneall for $N S D=5$
actade 176
.9025 NT=81, $R B S Q=2$. , I.C.as in . 9009
$.9026 R B S Q=1 ., N E S=1+B=.05$ in $\$$ $I_{\text {. }}=1 \mathrm{mi} 500$
.9027 same exopt $B=.1$ in setD.
.9028 contsal with zero I.C. in ayon
acture
240
.9029 similas to .9011 bin with

$$
N T=81, N E J=1, B=.05, .04, .03 .02
$$

pooknect

9/30/64
Problem 64795,9015 reveabal esror at stemeǹ 691 of WXR25C which offects only the CONE cale for passure dubdites of was not mevionoly bobes. This now beniz fixid tozether with yuinor change of 743 to be eppliat obow skippor shint foctor whenear shifped. Tive enor lisconery justofié the cartion in setwri up. 9015 ap les thon a full sun, (asorgrially vitended).
We con now/adge if NT $=81$ is too much.
perhepo not.
64795.9021 $R B S Q=2$. made verplitthe difference
one KTearhiei in yits. $3 \not 44$
\therefore Whycht eventry RBSQ $=5$.
.9022-24 blorkd because BEB miput card was nicorrect siniplar touble with . 9026-28
need resun
d）
 an Mens ar in estimated of liovers wes－ 100 secs
Leex was 100
socuevio न्0

Than ar pixh

$$
\begin{aligned}
& \text { H也乏 Ah min iatra TA ero }
\end{aligned}
$$

Themerin aow Lios turjen 898 equant beborl pe－ssop．
－murben toen

Pricyial dofference is That both $B+C$ grow foster cooth $R B S Q=5$ ．I hence reach prak conditions Soores in cp． 4 ．Diflesence presunty not enorigh in cpt 3 Leearse sofety factor is greater．The actual peok oder in ost＇f（os doperant KT）are very simitand）

10/1/64 (stup 9/30/64)
$64795.9031 \quad$ RBSQ $=5$. othermise like 9021 \&.9008

Here peohs in apts 1	2	3	4	9	
KT	6	9	11	19	26
	.942	.945	.938	.807	.468

soma spite is eastien, of. p. 14 , whereas apte 1,27 ore sume 3 nergseight.
64795.9032 art .9033 SNAFU become nglete It ose NE $T=1$

Hiv very miteresting That nicressing PBSQ from 1. to 5. had no essentala sfted upon dxoval propogation, lut siznificail effoc rypon soma deloy. Nowlook at BCC values

Actual runtime was 1485 secs
or 25 min
$10 / 1 / 64(\operatorname{set}$ up $930 / 64$ production sun $)$
64795.9016 sitrocellular is fine.

SNAFU with CONE
Could it he that they did not have the new version of 95 C incorporated ito their production sun?
64795.9035 \quad BSD $=5$. penere $N J D=10$ compere with 9025

oo prefor RBSQ $=5$.
Here also trouble with 95 C CORE
64795.9036 (locked, lin mig 15 hove been

OK. with $R B S Q=5 \circ \quad 3$
64795.9037
both $B E B=0.1$ did not block
Somaprak of $K T=30$, ample :6765
8
$10 / 1 / 64 / 6$
64795.9039 acture with NJD $=10$ coder kinatios
Note (1) Here Cone calc, wortes? parmibby hecame actiwse
(2) Qho BEB was for too effective
seduce I.C, twogle mahe fleat obo, mughas well une RBSP=S.

Encourogeniar to use flat foulitation cortiuly forparsie lut porbups even for actriue.

81

catenn+ Nesou
 coxitos x-oset uthent

 $-22892+0$
 Gaid
$\cdots+\cos +2$

10/1/64
Compaing NJD $=5$ \& 10
True distarce from soma to glom $\approx 0.4 \mathrm{~mm}$,
$\begin{aligned} \therefore \text { When NSD }=5 \text {, compertmental } \Delta x & =0.08 \mathrm{um} \\ & =80 \mathrm{u}\end{aligned}$ $=80 \mu$
Whon $N J D=10$, compritiontal $\Delta x=40 \mu$
Wehore heen assuny that Δx is same for axou ϕ deubhetos and Thus $\frac{U A}{U D}=\frac{\text { axoudiam }}{\text { dend.diom. }}$
of $\Delta x=40 \mu$ and aydian $=2 \mu$, supue erva of one aroual congathen is alout $240 \mu^{2}$

$$
\text { if } \Delta x=80 \mu \quad \text { ge } 480 \mu^{2}
$$

Soma suppee area approx tho f able 20μ on sode

$$
g+6 \times 20^{2}=2400 \mu^{2}
$$

-. when $N J D=10, \frac{C_{A}}{C_{S}} \approx \frac{1}{10} \therefore$ here $\frac{U S A}{U A}$ stout he $\frac{1}{10}$ जren $N J D=5, \quad \frac{C_{A}}{C_{S}}=\frac{1}{5} \quad \frac{U S A}{U A}$ swoedhe $\frac{1}{5}$
Recotly, hove used $\frac{V S A}{V A}=\frac{5}{25}=\frac{1}{5} \operatorname{cov} \operatorname{sinad}=2.5$ use USA $=2.5=100.50$
$0)+z=a[4$ emintana)
inux mase a sumer amel what cisb ens

$1.08=$

 1 mudibines = $\frac{\mathrm{AU}}{\mathrm{CU}}$ cont Ine

$$
\begin{array}{lllll}
& U A & U D & U S A & \text { USD } \\
N J D=5 & 25 . & 100 & 5 . & 200 \\
N J D=10 & 25 . & 100 & 2.5 & 100
\end{array}
$$

$10 / 1 / 64$
Conchesions, mizht with to ty

$$
\frac{U A}{U D}=\frac{1}{3}
$$

lookbock a poge 70 of Book H $\frac{\text { USD }}{\text { USA }}$
Cousoder unimini deutsites as 1 primany $\$ 2 \mathrm{sec}$. with dianters opprox 3 twasaxom.
then $\frac{U S D}{U S A}=3 \times(3)^{2}=27$.
Consoder one priñary with alian sotro $=4$

$$
\begin{array}{r}
2+4 \\
16+5(2)^{2}=28 \\
16+4(2)^{2} \\
32
\end{array}
$$

© ollimis hove UD $=100$
©. we could do seme rums with UA $=33$

$$
d \frac{U S D}{U S A}=2.5
$$

$$
\begin{array}{lllll}
& U A & U D & U S A & \text { USD } \\
\text { for } N J D=5 \text { thismans } & 35.100 & 7 . & 175 \\
f_{0} N J D=10 & 35.100, & 3.5 & 88
\end{array}
$$

Computer Time on Production Rum

	Roughest. Actual	cum	
9041	118	110	
9042	118	111	221
9043	112	104	325
9044	120	116	441
9045	200	219	660
9046	100	114	774
8046	100	113	887
9047	100	109	996
8048	263	odd	278
9048	263	278	1273
9049	263	271	1828

10/2/64 Arch overview of new results.
64795.9041 Flat residua fail worked fires
?.
Passive with $N J D=5$, with no ε
Also cone now working, evidently previous series hal not used the new 95 C
Good extracellular series - suitable for plot.
64795.9042 flat residual foil 0.1 phis $B=.05$ $\left.\begin{array}{l}\text { hottorpeck } K K T=11 \\ \text { sound } M K T=35\end{array}\right\}$ longish delay
prosible for use: did not reflect. bunt ret case is probably better.
64795.9043 same as above with $B=\cdot 1$
good rum
But may ned controls to see if $41 \$ 43$ wowlefire
Ideal may lie between $42 \not 243$
Nostrum could he line 43 wi hoot E in soma do of ovid that wothent antidromic

$$
89.48, \ldots+0.0 .
$$

$$
\begin{aligned}
& \text { - rox phobera à sonetpental }
\end{aligned}
$$

10/2/64
64795.9044 actine, "cool", shont plat mild facilitation (loth vesichal $A B$)
got sunchronons somadendritic with "good" axou-soma delay.
Etracelheler is lohe $\frac{d V}{d t}$ or amplitude is ondy 0.2

$$
\operatorname{for} V E F=4
$$

down a fortor of afor 10 from non synehonans denditie spile. opirteret po Stofamo slong
We comnt rule on VEF $=40$. opriori biet it con probobly he vuled out on the basis that E o $\%$ can modifay invasoon such that syuchinony vorld not always obtara. Any variation misynchrany wand have severe offed on onplitudb.
Also deloy of of neg peoh with distonce moy be diagomitic. - shoued he chented,
εs

دilumub mones eurgronndownestos
pusd swnez nevino "1 soep in hín

$$
\Delta 2 \Rightarrow \Delta v \mathrm{~m}
$$

(- prear wrant 81 Znots es ralue s muses - astixe suisidrads a maronhurpes

 5 Trantio eculs
Henow puos en be man wénery pood

- elanixime neto ofe venos suad

1012/64
64795.9045 pasone $N J D=10$

Somefrodos KT 18
Goodrum
it isclear that resithal fail wos decayning of would $r x_{1} \frac{1}{2}$ seep, fired wo than ansidiomi anglotude decrements to 0,25 in gpt. 14
(Should plot)

64795.9046 ponve as above
fit with $B=.05$ midendites
I.C $=.1$ ins somat dendites

Somafired at $K T=43$
64795.8046 same as 9046 except that USD $=62,5$
here somafies at $K T=27$
64.795 .9047 like 9046 exopt $B=0.1$ in dendrites here soma fired a $K T=39$

The moblem of minim amplitride proximal to glomesulus moy be resolned or avoited ly the pasinairy 0° seconlay sinearng which ryill ruke perifhery necesadily hone lowes auplitude.
A contra-midication for the acture ryuburonos cose is the ver suall penmplitude at intormediate depths.
E Consequences of syuchrory
(1) suall anphitude of extacall
(2) foster foll of intracellular
(3) more veally equalsize of $\bar{T}+$ peaks
(as expectod for dt)
? (4) get minimal anyletude at intermediate deptha.
What dis coper bacic canse of dife, becense it misy occur als whith porve (it is a cancellotinadretoPDpet)

10/2/64 Active with NJDD $=10$
$64995.8048 \quad$ USA $=62.5 \quad$ I. $C .1=0.1 \quad \mathrm{~S} \times D$

$$
B=.01 \text { in Donly }
$$

Somafires at $K T=24$
copf: 14
nealy syndironons
expect $\frac{d V}{d t}$ opproy for V_{e}

$$
\begin{aligned}
& k T=22 \\
& \text { arypl }=-.54 \\
& \text { for } V E F=4 .
\end{aligned}
$$

Nuigit poy to ty to slow folling phase Becary folho phase is not cominteracted hy ebict wotonie back flow from a latr dowishearn spotse, since here spithe is muchorons.
64795.9048 sameas 8048 with USD $=100$.
almos syudronoms
Soma fires of $K T=24$
on $14=25$
cN. 14 a $K T=25$
trivially differen from 18048
64795.9049 had I.C. flat, but Buahes graded
(similer to. 9039) bui letter
Here denbitic mivesion is progressiae
Presunuofly soma would fire without the autidrovic. Tirs neds to hone E toben ont o/soma

10/2/64
Cond do a sequel to
$\left.\begin{array}{r}\text { for gramile } \operatorname{Hell} \text { woth } \\ \text { RHOSOM }=1.0 \\ \text { RHOGMM }=1.6\end{array}\right)$ V
use VEF $=10$.
see 8215 $9 / 15 / 64$

$$
\begin{aligned}
& D F=, 01 \\
& N \$ T E P=5 \\
& N T=70
\end{aligned}
$$

$$
\begin{aligned}
& \text { RSOK }=1.0 \quad 8216 \\
& \text { ueeds card } 6
\end{aligned}
$$

10/5/64 Set up production sum

Actual rum tries woos 1994 secs

mote that actracelluler pots. are essentially the same for this as for antidromic

10/6/64 Looknig over serilts of production sum
64795.9051 Passive, $N J D=5$, hot, I.C. $=0.2$ flat in dentures
bit not soma, NE J $=0$
soma peak occurs at $K T=32$
(in. 9041 "" "" " " $K T=16$, ut monist have fired
without the antidromic.
Woqwish to increase I.C. to 0.25
$\begin{array}{lllllll}\text { intracellular } & & & & \\ \text { peak amplitudes git. } 4 & 5 & 6 & 7 & 8 & 9 \\ & .77 & .64 & .55 & .49 & .47 & .46\end{array}$
The extracellular pots, are not pretty enough: maybe This reaction is mainly to the eloy, but period II is rather blunted.
64795.9052 control with I.C. $=0$ in cit t. (1).

Soma fired a $K T=38$
hilloc fired at $K T=27$
(1) We may hove to tolerate a low level of spontaneous ping. Howen, exp less than 10 per sec.
(2) RBSQ way hove to be set bock from 5. to 1 , but this may require more residual facile. to prevent antidromic block.
(3) Perhaps initial conbiston needs to niche same refractory BJC in the ayoud \& soma cots.

85 wur wortwatronpfp ateren sero caustred.
 $0=$ TMM

1. Serow hation
-25.0 a , , I goweroim ने N Nrwo pour
notuald $x+\frac{1}{-2}$

II

- Delcurer saresnás

$$
88=1 \mathrm{~B} \text { फo berk sunot }
$$

SCEIL toe Joés sollót

 - Ito sonnes - P Juop whit - DTS

10/6/64
One implication is then, with pros sore dendrites, a soma spike does hare sigguitican electrototice speed into the coubrite, but the dendrites de not actively "clear" Themselves p tresichal fail. is temporarily enhanced (which may not it physiological facts? ie. dandites are fail. (depot.) bi are the soma \& unto sophactory?) thiportant to follow the recovery of soma and hittoc $B E B+B 5 C$ of is vic No see how refractory s al so to does to clear the dendrites?
64795.9054

Coutrol got bcal respladrog to peahs at KT $=42$ in efts $1+2$ kT $=44$ in gtt. 3
qt. 3 gota ahed d pqt. 4 a $K T=25$

Conel wabke $U_{A S}=2 . * U_{A} ; \quad U_{D S}=2 . * U_{D}$
and moke $U_{S A}=U_{A S} * \frac{C_{A}}{C_{S}} ; \quad U_{S D}=U_{D S} * \frac{C_{D}}{C_{S}}$

10/6/64
64795.9053 persive, NSD $=5$, hot, I. $C=.1$ s*D Coutsol 54 $B E B=.1$ in Donly.
soma blocked
peak urs - 1702 a $K T=15+16$
maviously $42+43$ had BEB mi the soma 4 did notbleck hio worked hore fised witherthomic
notice $\frac{\text { USA }}{\text { UA }}=\frac{5 .}{25 .} \quad$ USS $=206$.

Note that $U A=25$. mears that $\Delta Z=\frac{1}{5}$

$$
\begin{aligned}
& \therefore R_{i \Delta z}=\frac{1}{5}\left(r_{i} \lambda\right) \text { wile } R_{m \Delta z}=5\left(\frac{\mathrm{~mm}}{\lambda}\right) \\
& \text { or } R_{m \Delta z}=25 R_{i \Delta z} \\
& \text { or } G_{A_{0}}=\frac{1}{25} g_{A_{i j}} \\
& \text { or } U_{A_{0}}=\frac{1}{25} U_{A_{i j}} \\
& \text { or } U_{A_{i j}}=25 U_{A_{0}}
\end{aligned}
$$

Now, we assume $g_{S A}=g_{A S}=g_{A i j}$
Antritine explonation of soma block is That the rate ofelectrotomi spread Futo the dendrites is rafid.
Therpere depolorizing cursont from littor nust brids the loss of soma toropuld equalization tondency. As USDaval UD are niveased to larger volues, the soma copacity is

Compore $64794.8853+4 \quad 9 / 22 / 64$ where $U S A=10$, \& USD $=400$.
gove louger axon - somadeloy
Thon USA $=5$, \& USD $=200$.
everythingotse the same
Howvener These denbistes were actrine,
Hog ned to be rechecked with possive deubsites
inthis cose, the hey to the dofprency is that the sonea frod a lorze I.C, ant lost it loss ropidy (becase of loger C, swaller USAY USD) Thon fui 53 a this setup an barker soma local resporese q cartios sorva firtis mispite of weaher feed from hittoc.

1016664
plood nore + more nistadanoondly in prorallel with the denbitic copecitos of it becoures les of less responsore to depolarizuy cursent．Also any brial ass of soma depol over dendictic depol．disappears very sopidly．
Qhos，the anons of arrsen flarilb into the soma as a consequence of hilloc spote is proportional to USA．
\therefore Doubline⿻儿口 USA doubles cument into soma． bat Doubety SD doubles tendeny of soma to equolize inth the dendrite． The not remult is lers sensiture soma reppouse．
Note：p． 24 64795．8046，deceas，Uy USD only， consed soma to fire sooner for cose of parsine dendsite．Because exchange rate with denbitic lood was reduod， is．Some was less sluggish，
but．P． $25 \quad 64795.8048$ ，decreand USD had very little offe＇when denbites wese
act wre．
1ε

 - DS. Luew rashonalabeb Q errourechod asel (-)

Senowher xuthes aty

10/6/64

$$
64795,9054 \text { - Controlfor } 53\left(\begin{array}{c}
\text { seep. } 30 \\
\text { toppont6 }
\end{array}\right.
$$

This shons tha it is porsoble to hove spontaneas fing of hitbe of dyon withor firms of OThe soma. The soma just sees depol. up to 0.2

* Arpulse arises at cfts $1+2$, say 9 firstnode.
64795.9055 Pussone, NJD $=10$

Contiol for 2045 withon antidromic
$\begin{array}{lllll}\text { peoks pits. } 1 & 2 & 3 & 4 \\ 13 & 14 & 16 & 19\end{array}$
$\begin{array}{lllll}\text { ustercasfor } & .9045 \quad 6 \quad 9 \quad 11 & 18\end{array}$
64795.9057 active, $N J D=10$
attempt at decremental story
blocked at soma.
$B J C=, 1,2, \cdots-1,0$
pots 56 .

SE
 Le env Conh molit of soth of sinh
 C．an ant in
cti ahd ho oterun ealabitys －abaritay

$$
\begin{aligned}
& 01=\triangle L M \text {, 2rumal -ecQerieped } \\
& 2 \mathrm{z} \text { of sof lontures }
\end{aligned}
$$

folc Daturmevests to ty inters
－ancose lo uostureth

$$
\begin{aligned}
& 0.1=\cdots, \ldots, 1,=288 \\
& \text { サリー - - } \quad \text { - 2 ? Nop }
\end{aligned}
$$

$10 / 6 / 64$ $Q B=30$. 64795.9058 acture, $N J D=10$, coolkination

$$
\begin{aligned}
& I_{.} C=0.1 \text { in } S A D \\
& B E B=0.01 \text { u } 11 \times 1 .
\end{aligned}
$$

Comperemith. 9048 where $Q B=40$.
same syuchonors spite at KT $K=24,25$ verysmall extracell.

$$
Q B=40
$$

64795.9059 acturi, $N J D=10$, colkinatics flat rendual fail
shoped BEB sowe as 9049 except here not in stoma.
\# pretty gool axtracelulars
bw@ does shecial shoping/
(b) would fire from shopniz alone

Coould be suitable for plothin, esert would esthe joll of intiacellula to beslower.

Seebelow go, if holf of the mitial cells frie:

$$
\frac{V E F}{100}=\frac{1}{14}
$$

$$
\text { for } R_{e}=R_{i}
$$

$$
\text { get } \approx \frac{4}{14} \approx \frac{1}{3.5} \text { for } R_{e}=4 R_{i} \text { in. } 285
$$

olternatively conld take an Re 50 dim and estinnate true extocellular voossect. Which howeder wowld he somethy like ?
note grambe all dendrites t azons which lie perallel to mitial dendriles will, if they are several λ lovg, will he open to cusrent flow wetween mip. devel Aglomerula level.
Thus nie minh appooch $\frac{R_{e}}{A_{e}} \neq \frac{R_{i}}{A_{i}}=\frac{A_{i}}{A_{e}}=\frac{100}{800-100}=\frac{1}{7}$
$10 / 6 / 64$
64795.8217 granule cell series.
.8218 It
pretty good suns
get surprising sharp reversal of eqnacellueler in apt. 8

$$
\begin{array}{r}
\frac{V E F}{100}=\frac{r_{2}}{r_{i}}=\frac{R_{2}((t+e)}{R_{i} / A_{i}}=\frac{250 / 800 \mu^{2}}{50 /(5 \times 30) \mu^{2} \text { mall }}=\frac{5 \times 150}{800}=\frac{750}{800} \\
\approx 1
\end{array}
$$

1200 mitialcells per $\mathrm{mm}^{2}=10^{6} \mathrm{\mu}^{2}$
\therefore each has $A c \approx 800 \mu^{2}-A_{i}$
fulcronge.
Rasfleature

$$
\begin{aligned}
& A_{i} \simeq 100 \mu^{2} \\
& \mathrm{Ae} \simeq 800-100=700 \\
& \therefore \frac{R_{e}}{R_{2}} \frac{A_{l}}{A_{e}}=5\left(\frac{1}{7}\right)=\frac{5}{7}
\end{aligned}
$$

Suppose only rexyothor mitral celffies, then $\mathrm{Ae} \approx 1600 \mu^{2}-\operatorname{tic}^{2}$

$$
\text { thenget } 5\left(\frac{1}{16}\right) \approx \frac{1}{3}
$$

Gordon volleys were often slight y les than maximal in however it is possible that a vibita tail fraction of the mitral cell population blocks at the sound, pantos not the same calls on each test. Peannbly there is graded dist. of softy actor.

Vookol at 64795,9058

$$
\text { git. } 10
$$

where nigpede amplitule was .02
botsoma ing pahrarpletadions
worl need

$$
V E F \approx 5 \times 4=20
$$

10/6/64
If previans foge is cornat, we con justify
VEP Golves as large as 10. To 50., which means that the almost synebromoins dendicie spines would hove dy extracellulars of sofficiens amplitude to ogres with experiment.

Must rexamine such coses of active denbites a
Raised question as to whether facil can remel fom, Voltey previon volby (usually /sec) earkier. Luhwhe usvally lasts $\approx \frac{1}{2}$ see bit found only mi abon halthe cells

Pervod I seens to sequire the potential divider.
Pervod II should hoone a reversal point
of rother mall veg., if it of rother mall veg., If it were due to unitial GEC only.

Proboblyneed to use deeparonal GEC to tane care of this.

Howener, The fitermechate tiphasic reeord has a prominair vegativity which is hald to duplicate with mitial GEC olone (ii. with wearly)

$$
\begin{aligned}
\text { SHCF } & =\frac{2}{25-50} \\
& \approx \frac{1}{10} t_{0} \frac{1}{20}
\end{aligned}
$$

$$
\therefore \frac{R_{g l-g d}}{R_{M B-g d}}=\frac{6 t_{0} 11}{20 t_{0} 40}=\frac{1}{2} t_{0} \frac{1}{7}
$$

see p.87) of book 4

$$
\begin{aligned}
& \frac{R_{\text {sulgd }}}{R_{\text {mut-gd }}}=\frac{5510}{\left(5 \sigma_{0} 10\right)+3}=\frac{5}{8} t_{0} \frac{10}{13} \\
& \frac{6}{8} t_{0} \frac{11}{13} \quad \frac{3}{4} t_{0}^{\frac{5}{6}}
\end{aligned}
$$

10/6/64
Even the forswore denbicte case has trouble
with the amplitude of negativity in The transitional triphasic.
Here again, need deep soon GEC
This serves two pruplosed
(1) it shaves surface pos. of Period I to make the pate be earlier.
(2) it provides sobusthens of the transitional triphasic.
101664 Ponder the trausitconcol tropberor
10/2/64
Tomimic dey mayon GEC get a soma spike with little or no dendritic invasion, by mahurg. UD very small.

This criticisen applies primasily to the synderonous acture dendrites.
Guparticular the sloped active .9059 hres a beny its ominaen negative peale in its than itional triplosie.
$10 / 7 / 64$
What are the disnepancies of usury Wital GEC only.
(1) Pervod I supoce t peaks a little cartier thou deop neg. prenoticaf (bormesportitime)
Therosticifional triphosic hos a negativity That is too surall (becan of PD condeding gffed)

Espemiantal
(3) Period π surface neg tends to be larger obs value than The supfor pos. of Peried Ig white depp pos op Pervod II is sualles thon dep nef of Pariod II?
Wheas Theoretical, for passuie lenbritos has a much smaller surfoce neg. in Perod II. To actrue domarite, depends upon dituats of $\frac{d V_{i}}{d t}$.
$10 / 7 / 64$
Dones
plot best computations now available
passive NJD $=10$, proboblybest is. 9045 of. $\frac{.8046}{\text { norstacieluean }}$
actinie $N J D=10, \quad .9058$ of 9055 flat sllopedaroded 6699
shortpassone NJD $=5 \quad .904164791$ also old 0666
short autrie $y^{2} D=5 \quad .9044$
another shat activie $N J D=5.9006$ sompeeha $K T=17$, periph peah et $K T=19$
$10 / 8 / 64$
. 9041 slightly better shoit prossure Thon. 0666 S. 9059 and. 0669 shaped active long
These both hove the most prominait These both hove the most prommant transitional trithaste. They will he superseded ly 9069 with $Q B=30$.
pedneg.
$(-.22$ with $V E F=4.) \cdot 9044$ is best case for synchrovars actrie dentindes
-.414 wruVEF 4 . . 9058 is good for showng problen of 1111114
$(-78$ witullef $=3)$..9006 is O.K. Un adds wothing to theothen Fwo exapt note omplitude foctoro here.
. 9045 is a good long possine, butslower.

- 2045 is a good loug possire, butslower. 2041

> CH3 38
> colinaccathutio

CPStis ato $1+4$.

thop: $8=6 \mathrm{GQ4}$ ginden thath

\qquad

10/8/64
May wish to plot
Latency versus distance of sutracllular peade qtacelleuler crossoner peakneg.
Use time of hittoc whecelluler peak al zeso. or porsillytime of pyt. I preak
diethis 10/8/64
Plon to sun 64795.9069 like 9059

$$
\text { bive covth } Q B=30
$$

64795.9062 like 9052 control bul with
if A would 250 thenes vohes to coner 2.5 T
FATES $T=125120 \quad$ Then each $D T=.01$
$N T=251$ allelse same as bofore
ampors50sec except IFVE=0 of debe $N T$ and 6
64795.906 \$ like 9054 exept that

9proy 580 nees

$$
\begin{aligned}
& N T=251 \\
& \text { IFTEST }=125120 \\
& \text { IFVE }=0 \text {, debtecand } 6
\end{aligned}
$$

Ps 9061 sest. Gatual
$.9061 \quad 140$ nec tat a 2 and all
.9062550
19063550 to sontraib avors sume be
$.9064 \quad 140$
$.9065 \quad 140$
$.9066 \quad 140$

.90685550 trpp sunt pirmeinse
.9069280
.9070280

$0 \varepsilon=\frac{58}{55.4 \mathrm{mil} .}$

A frofut ouras ulalle $12,=$ M

$$
125=8 t u
$$

$12 S=74$

$$
\text { 0 } 2 S 1=129 \operatorname{TaI}
$$

10/9/64
Qlso do an active to posive with $V E F=6$.

$$
\begin{aligned}
& S H C F=0.5 \\
& P D F=0.25
\end{aligned}
$$

to see what happens
Ty this with .9061 bsed on. $9041 \quad$ VEF $=12$.
.9064 bresed on .9044 me VEF $=40$.
.9065 based ypon . 9057 for decrementalspike
$\begin{aligned} & .9069 \text { like } 9059 \text { bul with } Q B=30, \\ & 20 \text {, }\end{aligned}$

- 9067 controls for acture case NSD $=5$ beslon9004 .9068

Bestones .9045 passine, long, plet facel. forpothing. 9041 passone, shoot z, flet facil.
. 9059 actrie, loog z, sheped facil. (large + phese)

- 9044 actwe, shortz, flat facil.

109/64 Grodiant flots. pich KT values, such that miti. leoel spike (with PD effec) is
(1) (7) $1 / 1 / 2 \times$ of peeh ompl.
(2) (3) peokneg.
(3) (4) MANtock
(4) (5) Ocrossoner
(5)6) O/1/2 to pos peds
(6) (2) pos peok
(7) (8) $1 / 3$ recovery
(3) $4-567 \cdot 8>9 \quad 5$ stepo
(23) $4567891041 \mathrm{M3} 14$ lostepo.
alro. 9044 shoned be
spiededont.

Renien
64795.9061 bosedon 9841 butwith VEF $=12$., SHCF $=.5$ O.K,
.9062 NT $=251$ pensivecontol spontract. exp. in afoonal ypts.
.9063 similea lov with $B E B=0.1$ in denalideos
AM = 42 axoval foring withat soma
$K T=100$ some fires first
$K T=222$ ayoual formy wothonsoma
$K T>251$ looks the soma will fire furst.
.9064 active, enoneons ifut cands shoved redo corsectly?
hore soma q denlite finel logore apon become of too unch foail
. 9065 active decranertd conlustion cose $\}$ deley more I.C. BEB

- 9066 Bettery bit not morigh decrement. need louger stepro of $B 5 C$
- 9067 active contral with NT $=251$ क wow NES KT=1 and99
Somadend fire ar $K T=7$

$$
\text { aganis } 106
$$

Then all damped ont

- 9068 active catral with NEJ $=0$
somadenl firerot $K T=19$
beyour KT $=210$, seem to get an artefactinal begunng of local response
- 2069 active redo of 9059 with $Q B=30$.

This shoved perpplener spusine layger then other dend.

10/19/64 pontweek was lont to roferee work \&t. Honever $10 / 9 / 644^{-10}$ simut the plotting, with Jordon, of a set of traurients and gradien plots suitable for final poper. This weok is gordon's last wede bofore leaurig for Stockyoln. He is worknoz on pois of the namscrigst, and rught now, t will setup the last fer compretotions that une con study tozether.
The long tine calculations reveald that these may be a minor problem at 455 and 462 of wxR93C894C which prevent B value from gonig all the way to zeso. Thiswes noted 10/12/64 and we hereby plon to correct this and retest.
also 451 and 452

$$
\begin{array}{r}
\text { T. Wodify wxR93C into WxR96C } \\
94 \mathrm{C} \\
795 \mathrm{C}
\end{array}
$$

intracell pechin (10) .9217
.9294
.9370
(14) $.9570_{1.0}$
$.9603_{1.03} .9631_{4603}$

Will hone to carefully check status of the figures.

10/21/64
Wahnerdoy: Today Gordon is in Boston; he will leave at end of the week. Today twill make concentrated study of the rough croft as it stands, winder for us to he able to discs it be pore he goes.

$$
\text { syst } 24
$$

Thad previously gone over the text written assad figs $1,2,3,4$. The new material is written aronlfori.'5. Return to Begungo now.

Fig. 1 1-A is exp. set up diagram
$1-B$ is anatomical schematic diagram
p. I-A distant for vidifferent
1.1 ?"initial" reppouse
(resistup) location of the distant electrode on this anear These impurer travel antidsomially...
p.I-2 reviseacoinhing to note A, as follows
1.2 When, forerample, the peak of the impulse is at the (soma) mitral body (paint Cm 7.g•1-B), the some menelrave depolarization in associated with a soma interior whose potential is more positive than all other regions of the initial cell miterior;
(therefore) Current must flow- (ni tacellularly) prom the soma into the dendrites; this current flows out across the dendritic membrane, and then it must flow (extracelbularly) from, the dendictic regions (A And B of 7 y 1-B) bock to the soma at C.

Consider withes ne need the tome, until GEC, here?
allista

andenden

$10 / 21 / 64$
p.I-3 ? Gordon's? above gamble neg to of bottom

II .1 mitral bodies, not ayon hittor.
? full series whore?
p.II-2
2. 2 tipharic $(t-t)$, with its negative peak near the time of tansition from Period I to Period III.
avoid muños inge: are of opposite sign, but otherwise similes in time corse. do will be disanned late, the deviation from prese proportionality can be attributed to activity in ails other than the mitral cells.

We will show that the surface negativity of period II can be regarded as a sign of soma membranes sepolorigation rotter thou of in pulse arrival at the periphery
(ley Gordon loot this empthoris at $5=g \equiv[-7$)
Fig. 3 was to he exp. grodicit plots. Bu this led to numerous difficulties mi proges 3,1

Decided to ship these problems intel later
The figure unither gained con be used to induce tho full experimental series as For, 2 or 3 !

Pome ar The apereof the cone, as show in plane projection in 7 is. 4 shoved really be an arg de of orly one on tan dopes.

$$
\text { po } \begin{aligned}
34 \text { gives } A & =800 \mu^{2} \text { a mitral cell level } \approx \rho \\
\text { goo= } \begin{aligned}
&=1.3 a^{2} \\
& a=\sqrt{255} \approx 16
\end{aligned} & =1300 \mu
\end{aligned}
$$

total surface area of a sphere is $4 \pi p^{2}$

$$
\begin{aligned}
& \text { is } 4 \pi p^{2} \\
& =(12.57)(1.69) \times 10^{6} \mu^{2} \\
& =
\end{aligned}
$$

A whole sphere subtends 4π radians of solid angle a cone subtends $\frac{800}{1.69 \times 10^{6}}=4.73 \times 10^{-4}$ rations of solid angle which is $\frac{4.73 \times 10^{-4}}{12.59}=0.376 \times 10^{-4}=3.76 \times 10^{-5}$ of whole

$$
a_{2} a=2 \pi / c h
$$

a hs

$$
\begin{aligned}
& r-h=r \cos \alpha \\
& r \sin \alpha=\sqrt{r^{2}-(r-h)^{2}}
\end{aligned}
$$

$$
A=\pi a^{2}
$$

$$
\begin{aligned}
a & =\sqrt{800 / \pi} \\
& =\sqrt{2253}=16
\end{aligned}
$$

for a very small, have approx

$$
\alpha \approx \sin \alpha \approx \frac{a}{2} \approx \frac{\sqrt{A / \pi}}{r} \simeq \frac{16}{1300} \simeq 1.23 \times 10^{-2}
$$

fernery other all,

$$
\approx 2^{\circ}
$$

$$
\begin{aligned}
2 \alpha & \approx 2.5 \times 10^{-2} \text { rations }=.025 \text { radians } \\
& \approx 1030^{\prime} \\
& \text { seemextpage }
\end{aligned}
$$

10/21/64
Paze 4.I dealnopwith 7 yy. 4 of cone mobal Iustification of cone con elro rest upon my sefporate poper.

* We coned do a quich calculation of true cone solise angle is. here the solid angle has been exagessatef.

Second It of p. 4.1 might wain to be turnel asound. also, shovel inchule ponvility that anly haof the cells fire, but fairly unafonn density of actire alls.
dorsal t ventral loyessmont clear enonaphiju conter ot then "in throztr does hemisphere A on throz/ watial hemospliere" os somethy likeethat.
pr 4.2 pooturte o botton. The molet inghes only ve concenvonto The model nicludea one peature which correcto for depastures from spherial vyunnty, othercose, the smimplicaton of spherival symitty is arninet. This one feature is an temal leakge froth from the canter to the owsode.
bottoritf corfuriogn nay-sesult from paising - bettes tra each sepraiately.
p.4.3? confusion betroeen current tresistance labelling, are we noning ind or dist?
fromp. 34
1200 mitial alls per num ${ }^{2}$ seans to inply $\approx 25,000$ mintral cells per belb,
Which is probobly Gordon's startug point.
Solidangle of erch cone $\Omega=\frac{4 \pi}{N}=\frac{12.57}{25 \times 10^{3}} \approx 0.5 \times 10^{-3}$ ratimingle
of and and

$$
\text { For } N=12.5 \times 10^{3} \text { sot } \approx 10^{-3} \text { redion ysseldafle }
$$

also, in rodiens, cisuler area for α small is $\pi \alpha^{2}$

$$
\pi \alpha^{2}=\frac{4 \pi}{N} \text { or } \alpha=\frac{2}{\sqrt{N}}
$$

\therefore for $N=25,000$, get $\alpha \cong \frac{2}{1.6 \times 10^{2}}=1.35 \times 10^{-2}$ radiuns $=0.77$ of a degree
for $N=12,500$, get $\alpha=\frac{2}{1.12 \times 10^{2}}=1.78 \times 10^{-2}$ rodions ≈ 10
is- whon hof the mitial ulls are active, there are 12,500 cones eadi of whose elements of surfoce makes an angle of oboi 10° with the eyis

$$
1^{0}=.01745 \text { radions }
$$

$10 / 21 / 64$
p. 4.4 ? ayous do not carry siwand?

The reference electrode wereploced at the denditic peropheng. (A) instead of At DLST (or GD on ∞)

This explains the ofprosite polarity (o sign) of The probertials of (C) ad (A) i- 7 s. 2
p.5.1 aston that there is no cur
asmme that there is no current through the extemal resistance loop, and that the reference electrode is at the same potential as if it were of The surface of the bulb or at the glomendar level (A).
$p=5.2$ top A no.
axon in oil; $\frac{\partial V_{e}}{\partial \beta}=\frac{-r_{e}}{r_{i}} \frac{\partial V_{i}}{\partial \mu}$
what re is a for of p

$$
\begin{aligned}
V_{e} & =\int_{\beta=A}^{p=x} \frac{\partial V_{e}}{d p} d a \\
& =\frac{-1}{2 i} \int_{R=A}^{=x} \frac{\partial V_{i}}{\partial \mu}
\end{aligned}
$$

due to mitialgec?
? core Cross section
p. 5.3 why we both r and p ?

$$
V_{e q}-V_{e 1}=\frac{I R}{\Omega} \int_{\rho_{1}}^{\rho_{2}} \frac{d \rho}{p^{2}}
$$

Better make a thoble for the paper.

Pot divides thin way because same cures flows all aroid ot these are in series. and DIST rapabents (zero) reference point.
Gore a numerical ex aimptepedyevel (MBL)
Suppose $V e$ at MB is 2.5 mV neg rel. to Ve at glomerwlar level (GL), then the $1: 4$ ratio of the resistinus of extend path mans the MR is 2.0 mV neg refits DIST, While GL is 0.5 mV pear rel to DIST.

10/21/64 \quad p. 5.4
The amer of ament will be $1 / 25$ of that flowning withithe cane, Or $1 / 26$ of the trial currew flower from A to C : maghe 5.5 shoued come first in tho test, sume it is the most importon and has alvedy been mentiond. The other two could go into fine print.

Seems to confure supfore recand an/ glomeuler leval recond.
tustad of ABC levals,
Ge G
Howobow
MB MBL
madine
p.5.6 Pesood II pris eppol. o/ soma fusst. \&

Then pri pronvic electiotomi on oetrire depol. ofdendites -
avoid source smit torumiolony
place enghasis upon cursent flow.
At moveluit matts if the sma were a somce for arand cunv flow, you would not ree any pot. Unbers duntint.) were ars a sance.
$G_{\infty}=\frac{1}{25} \quad \therefore$ unnen flor due to actronpot.
voltage somice is a negboyble i. hane to comiden the sel mont of extucell. amen generated.
mog Lova to ropar to en letes
discurs as to whey
The convent iveo (ribatp

- $/$ /hamposi is micelse
fecone perapidentite
are NT Sonce , ep
micore of. 9045

10/21/64
(1)
po 5.7 At is misleadro to soy the the sumpece pos. Af pervot I is due to the termial lenkites actizg as sources durny soma invasion;

At is due to pot. diviler effect of somanog. Wharh is dueto axtracell. curn flow frin PL dendites to MBL (lut not weec. form periph.d.)
This provides (look at the gradien plota agood hausit is no, natsiply e faction.

Then all recosds woved have eyactly the sometine course and differ ouly in maguitude or sizn.
p.6.1 charactaritic langh (λ)

$$
\text { l } \quad z k=l / \lambda
$$

\checkmark behove that elsewthere $Z=x / \lambda$
\therefore this I here is not consortent.

$$
\begin{aligned}
& \bar{X}=x / \lambda \\
& Z_{1}=\int_{0}^{x_{1}} \frac{d x}{\lambda} \quad \begin{array}{l}
4=l / \lambda=Z_{l} \\
Z L=Z_{l}
\end{array}
\end{aligned}
$$

Bit 1989 peper used LI/त
care in deolur with $\bar{\pi}, R_{\text {an }}$ o R_{i} actually better midude also Re

Disumvon 17 7y. 6 : neads mone mppreside ypou positine aspects.

exurou untion amor? rewabl $+8-8-8+8$
mbiver 3 3 3nt 2

10/23/64 Windup Notes, esp. re figures
Fig. 2 - order plotozroply of exp. series
1115/64 trotigonges dimension (inge) on pint to he 9"
7y.1-B modify on pint, leavnig out tufted \& prating $11 / 5 / 64$ tophoing collateral. 'Also GL, PL, MBL.

Whereas Fig. 2 will use words to designate layers.
Fig. 3 s still needs to be prepared. (Gordon has dow this 10/26664) $1115 / 64$ tophoror
Fy. 4 W.R. finish This fig- ofter paper is completed.

* Try. 5 records (Sutra, Extra, Recorded)

Could be dove before Gordon leaves.
Jig. 6 Proboly replace 9059
also 964 of 9044 con er
Tow r Theses Tramping
also 964) of 9044 coned have interpolated
scaler compartments.
Da new compritations, plot with Dow thy tassable.
Fug. 7 Latency versus Distance Plots. These will be changed when $9059{ }^{\circ}$ core redone
9041 are
9044
A told Gordon that A would conte the text for
This section. He dol hone a star!?

10/23/64
Fog. 8 Theoretical Gradien Plols.
$\operatorname{see} p .41$
? how to lobel thins chnacterized ly following poits of The MBL Thens? Thannien.

I-a	early I
I-f	peok I
I-C	late I
I-II	tranition I-II
II-a	early II
II-b	peabII
II-C	late II

approx $1 / 2$ bock down appor Crowover approx $1 / 2$ to pros peak apluty boa. peak oppoy $2 / 3$ bode down
need to redo Theore with $D T=.005$ or smaller. possobly $D T=.002$ *tablesonly.
Iig. 9 Epperimental grodien plots for couparison. Use some seven points mi tho liosed upar the MBL record.
The range from surfoce (0) to 0.3 mm defith. Gordon soys is nit well documentes. He heptingw the muzrocbetwo be in until he sour an obvoons change. Thus he chal not documen 1 To very small charzes betweon surface and Gla

These ploto were done $10 / 23 / 64$

Evidence agonist .9044 syach densities
with large VEF
Because this has too large a deep gradient at early times
Homewr p primary - secondary dendrite smear would reduce this?

10/26/64 Comprañ gradient plots

$$
7 i f .8 .9045,9041,9059, .9044
$$

Fig. 9 prelin. Mor 30 , Prot 2
Woy 16
Man 2 (ellustrotive seris)
Apil 12 Prod 3, lers complete
General comonents exp plats
we took 0.3 umi depth is negligitly difforon. fromsurface, \rightarrow this wis the of Mar 30, Prot 2
but not of others.
Moy mish to plot ouly from G h.
Difficulty is That grodient from surfore to GL wo not fully documented! Moynichude this in stachholin saries. Put here, best start fomGL TomBL to deeper.
Whas II-a Tine of Mer 30 Prol 2
a If-b of may 16
corborroods show small gradien for depths greates than MBL fit toter records shouv large pos. Slope rear MBL incone cares from $M B L$ degpar
miothens ts PLert MBL
niothers its PLey to MBL
Small grodents can he explainil by CORE $\approx 1 / 25$
\therefore lorge grationts comit be due to mithal apons
othis is witence fosos gramile GEC. If to

10/26/64
Sarly, gradiants all agre on curren flow poon dendites to soma.

Theoretical gove mose undication of gers grodien for onter half of dendrites than do The exptir
expones do all show steefignodien for penjh.
Nour tuste of fruñay - secondony smear.
Zut hor doo depucture from sphenical syudrony?

later firing cells coned hove their conds af as pothway for cortier fins would cail to show Athus woued fail to show zerogradien tha woued bepresen in pynchronous.
This hypotheris could he checked experimentatly by comparning records in arterion is porterion par of buill Gordou's study of May 31 (1960) does seem to fit this hypothesid
afonal GEC con be estinatad hy expersinients which Flode mitial cells.

* Reuods oftained uson mitrals Vlokk, should provide an approy. to off axon GEC sffe, roopl onemit remanber tha if nitial alls are not mivaded, the would not provide derbiotic Eto gramile dells \& gramie cell GEC would he difforent: gorton does hare some expte. results on this of could try for some mbore. ie. with two persee, sots Vodk every other time. Needs faster suego to see well. Gwoidel he

$10 / 26 / 64$
I-b exp. rewards do not hone surface pros. To theoretical ones \& this seduces gradiens.

Presunaby afferen Cxon GEC acconts for this. i is. Ap pills surfoce neg by sonepraction of the diep neg.

I-C exptl grodients are veorly flat prosre theortic dif of MBL shoped actine dijp ot opty. 8$\}$ indicatinn of syudr atrive dopo ofcf. 5 $\}$ innitifisung.
I-IItansostion (MBL a zero)
even passore cases hove nog $\operatorname{dop}(P h)$
proy. denditas renee as pamre mite for sepd. Soma of for the less depol. Iendivitic priphory;
.9044 does not dop.
exp. oner show very sloght dop as well as a general grodient fum MBL to GL which must be early gramile GEC
II-betc theoretical shom gudiant from MBL to $G L$ fie key little deeper Thon MBL axp. shour domination ly praule cell Giacren.
$10 / 26 / 64$
D. Gordon Shepherd

C/o Dr. David Ottoson
Fysiologiska Anstitutionen II
Karolinsha Arstitulet
Stockholon 60
Sweden

Look bock at eytracellulars for antidromic block

$$
\begin{aligned}
& 64795.9053 \text { Seep. } 30 \\
& \begin{array}{ccccccc}
& \text { gh.1 } & 2 & 3 & 4 & 5 & 6 \\
\text { intacellular pedine } & .941 & .939 & .918 & .170 & .153 & \\
\text { KT } & 6 & 9 & 12 & 15016 & 17
\end{array} \\
& \text { did not die anppoperly. } \\
& \begin{array}{rcccccc}
\text { zorosiniCoul, pede } & -.222 & -.286 & -.337 & -.236 & -.153 & -.09 \\
K T & 14 & 12 & 13 & 15 & 15 & 16
\end{array} \\
& \begin{array}{rccccc}
\text { p.d.foctar }=.25 & -.177 & -.246 & -.292 & -.189 & -107 \\
\text { KT } & 13 & 12 & 13 & 15 & 16
\end{array}
\end{aligned}
$$

Quphtike ferek neg is obout 15% of that

* Pestudy poge 29 *

10/266/64
antherblorbd cose is 64795.9032 seepoge 17

	1	2	3	4	5	6
Witaid peak	.94	.93	.91	.143	.128	.117
ITT	6	9	13	16	17	18

Jenoshin Conturt.

$$
\begin{array}{cccccc}
\text { nospeoch } & -.183 & -.25 & -.302 & -.1905 & -.123 \\
\text { KT } & 14 & 13 & 14 & 15 & 16
\end{array}
$$

This is chow (15\% of unbloched (see , 9031)

whinh peohs of $K T=18$ ampl $=-1.87$
sminilar malt woth Flock in 9023

$$
\text { almo. } 9022
$$

7y. 10 Cowld be included iu Discurnion mitial ayon gramile composit

\qquad

\qquad
Qusomptoch Tinho houls and
\qquad
$\left(1808 . x^{2}\right)$ beubatimen besis) eadociant

x- $-x$

$$
81=10 i^{2}+x+3
$$

$$
\Gamma 8.1-=1+\infty
$$

csepeares
\qquad

\qquad
\qquad
$10 / 28 / 64$
Since it is probable that poper II willoppeer rignificant yl later than poper I, perhops we should soy a little obow gamile and ayou superposition with mitial of prosen one or turs tenfatine reconstunctions.
Paper II would gointo nore detailed discrssoon Ofustification ot perhops also other kivis of plotting.

Auspection of Jordon's blockel mitial cell records shows a rexidinal peek that is one thut to ove holf of that with mivasion.

Didsuccarful reconstructions latween helfrig gordon get away todoy.
$10 / 28 / 64-11 / 2 / 64$
ofter Gordon's depasture
(1) rearronged bookcoses to provide for additional storize
(2) Pwt all aithen data analynis oway tosether
(3) Collected infornation on Feker l Enplojee Heath Benefit programifor presentation of arsuility Mectog;
(4) Prepared memo on Some
(5) Propperal sami annal saport on "Sioarifir Accouplbshan"
(6) Sent repuits to several secer sequests
(7) rephied to Fender's Col.Tech vimtation
(8) rephod broe note to Stask re Gordon Couppance

Nour time to get bock to fizures of Sud droft of poper. esp. Secoustinctionos. also, proto to send to Goldon

Whit wark on a juitfiction for dighasic agonal contriflation
$11 / 4 / 64$
Today completest a final pencil version of superposition Remeashafly
A. mitral $\$ 4795.9041$ successful
+B. axons dishasic graded
+C. granule similar tocomprobed
$=D$. superposition
for four depths GL, PL, MBL O GRL

Also fixed time dotted baselines of Fig. 2
to be ready for photogroplmy to be ready for photogroplyy.

Also fixed figure 1-B to provide horizontal collateral \#6 and shot ayou \#\# as well as level designations GL $\{$

$$
P L\{
$$

Quo "GLOMERULUS" inside the circle

$$
\operatorname{MBL}\{
$$

 $\} x 9$
$115 / 64$
Completed, with black Tape \& Leroy lettering,
\&took to Photogroplyy
I- 7 ign $1-B$ diagrom
II -Fig. 2 exp. series
III - Vg. 3 Three records with Pride I, II, III.
Cleo, took to Medical Certs the pencil figure 10 which shows Superposition (seeprevions page)

Now, must set up additional calculations int $D T=0.002$ for $9041,9044,9045,9059$ if NT muticiont

Perrsetaf - seeps 43-48 of this no took.

Haling dendritic pts doubles
ispor $\Delta z=0.1$, get $U D=100$

$$
\text { for } \Delta z=0.05 \text { get } U D=400
$$

Seep 61-62 of book 3
Factor /four con he seen as

$$
\begin{aligned}
& U D=\frac{G D}{C D}=\frac{\text { double }}{\text { hoff }}=\text { foritimes } \\
& U S D=\frac{G D}{C S}=\frac{\text { double }}{\text { midgard }}=\text { double }
\end{aligned}
$$

12/141 64 refer bode to took 3 p. 62 T ahead to p. 82 of prow took lop to.
Suppose now $L D=1 / 2 L A$, because $L A=L D$ for \cot, then $\frac{\mu D}{\mu A} \neq \frac{D D}{D A}$
$\operatorname{bin} \frac{\mu D}{\mu A}=$ four times previous
But talvedy got this from $(\Delta Z)^{2}$ conviduntion
$\frac{\mu S D}{\mu S A}=\frac{G D}{G A}=$ twireperious fut then thinchages $\lambda_{i j}$
$115 / 64$ Set up now rums

$\begin{array}{llllllll}1.64795 .9141 & 251 & 8 & .002 & .05 & 0 & 0 & 0\end{array}$
20
3 25. 400. 400.1 .3100 1111 4 5. . $0 \cdot 0 \quad .0 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \ldots . . .3$ teng the
\& 600.5. 100. 25. 40. 5. 50. 10
$\begin{array}{lllllll}6 & 4 & .25 & .2 & 1.3 & 1.7 & .04\end{array}$
Eleso let 64795.9142 be the same excost that cand 3 hos iftot $=1001$
cand 4 hes VEF $=\frac{103.377}{(4.0)\left(\frac{20}{14}\right)\left(\frac{3}{6}\right)}$
64795.9144

$\begin{array}{llllllllllll}2 & 0 & & 1101 & -1 \\ 3 & 25 . & 400, & 5 . & 400 . & 1.0 & 3 & 10 & 0 & 1101 & -1\end{array}$ 4. $5.0 \cdot 0 \cdot 1 \cdot 1 \ldots .$. elam of there 5. 400. 1. 25. 20. 40. 5. 40. 10
6. 4. .25.1112 $1.31 .7 \quad .04$

FH1+99.0 . $0 \cdot 0.01 \cdots$ - flat tht1+99.0.0 o all zero

9143 could he the same with $Q B=25$.

Supect $\approx 120+180=300$ secs for 9145
Bot ther two will be $4 X$ as minh in the Ringe Kutta - Moyhe 600secsleach

$11 / 5 / 64$
$1 \quad 11251 \quad 2.002 \quad 1 \quad 0 \quad 0 \quad 0$
20

43.5.0.0.0.25

会 600.5.100. 25.40, 5.50. -10
$6 \quad 4 . \quad .25 \quad .1112 \quad 1.3 \quad 1.7 \quad .04$

$$
\begin{aligned}
& 4 \text { 5..0.0.1... flat renidual fail } \\
& \text { 5. } 400,1,25,20,40,5,25 . \\
& \text { 6.4.4.25.1112 } 1.3 \quad 1.7 \quad .04 \\
& +1+1+99 \quad .0 \quad .0 \quad .0 \quad .0 \quad .04 \quad .03 \quad .02 .01 \ldots \\
& \text { t1t1+99-alagero }
\end{aligned}
$$

Concls ready 10:30 AM $11 / 6 / 64$
 14 $\bmod .451,452,455,462$ क progham mimbers
aloo get sod of BINC A RINB in main prognam (anachins Aloo gect sod of PINC 4 RINB in main program (anachrons FEE)

$$
2 / 21 / 67
$$

use FAC $=2$. to lon
are lit into min

Red represents core resistance, an when assigned to connections as shown green, we get what hoo bean used so far.

$11 / 6 / 64$
Just modified $W \times R 795 \mathrm{C} \longrightarrow$
$93 \mathrm{C} \longrightarrow$ WXRT96C

$$
\begin{aligned}
& 93 C \longrightarrow 96 C \\
& 94 C \longrightarrow 97 C
\end{aligned}
$$

Cleaned up old RINCARINB, also QUENCH: QENCHA \& GED:UDet, taken care of by Subrow. ans
Mont muportan changes were.
(A) Smaller tots at $455+462$ to prevent fictitious local response ni the long period runs.
? \# (B) put in factor of (2. at $451 \not+452$ to make $\mu_{i} ;$ the save for end compartments as for in between corpastments.
Rationale was that g would he twiceasgreat at ends, but not so sure
Reilly ongls to he twatal by The more careful method Fin uses for lumping.
The intutione argument is fairly clear for doubling g at the axon soma jon, but this wad not, intact done Better Ponder \% Reconsider this.
$11 / 10 / 64$ got results on 64795.9145
seep.61 9160
9144 dildnot rom hecoure of error milords.
.9145 agrees with 9045
The eric time values will be a help. the gradient plots were probably close enough.
.9141 does not agree exactly with .9041
This shams even in the intracellular values of comprntmen (1). Sycamine more closely.
UA \& USA are 25. and 5. in both cases UD F USD differ
$\left.\left.\begin{array}{rlrl}\text { in } 9041 & U D & =100 . & U S D\end{array}\right)=\begin{array}{ll}200.0 & \\ 941 & U D\end{array}\right)=400 . ~ U S D=400 . ~ N J D=10$
$\left.\begin{array}{rl}\therefore \text { in 9041, } U_{S S}=206 . \\ \text { in } 9141, U_{S S} & =406 \text {. }\end{array}\right\}$ this in probity not desirable should leone USD some as before and change only UD
 also 9244
The, set up 64796.160 to test newrproprow on this question of longe end intracellular spike.

Thighill beprubthsthed in book" Nerve es a Tis sue"
Sir form Eccles 'dimer speech was rather interesting
focursel on reminiscences, sciatific method, scientific spirit themanton scope xfutime
a) commented on how fortunate he had keen to join the Slarsugtare school at this peak of The clasur neurophypiol.era. No sulst. for working with a que ct sanastest.
b) commented that he had masitically accepted the esronoons inductive concept of scientific method which purported to get results from an accretion of data. That (assr 1945) he hot been very depressed when he realized that data was disproung the ebctrical hypothesis for neuromuscular juan, where he hod pretty completely committed hin self to the electrical hypoth. (is. Lefelt that a cherished belief was heniog
c) destroged) Kab Popper saved the doy for him by conumicing hin That saexice progresses through the folsification of hypotheses. The disproof of a lmpothesis should he a cause for rejoicing, rather than dispair. This gone him a new lease on life, bat, course, he prefers to be the one who disproves his hypotheses. He was very definite that hypotheses should not he secure, bit that they should he definite * clear \& novice a clear target to he shot at. He cos praised
d) the free level of personal communication amongst neurophyjsologists; implied that there was secuarkably little petty competitiveness -rather paradoyically pious in view of his own record. Said that friondshppo coutinied in shote of sham scionitpic disagreements. He also commented that it is letter to the challenged in pint than to be ignored.
e) he eroded on the note one reason for the lack of bitter competitions 4 locke of tying to pap a proplein to oneself, is that there is so mulcts to be dove. There are enough problems for everyone, the fold is wide open. Each sacks opens up more. The program of miderstondnog the mechanistic aspects of the brain expuds actuedas several generations unto the future i into the rept gosctury or nose. He umphed, frit dy not dwell on the though that the "hin - unid"problem canal be postponed that long. He uso, infarct, fuggy, re braina-mind distinction. see nestyy

11/16/64
Gustratuond from Nerveas a Tissue Conference
Saw Sig. 4 mas.E, Cole, Wridle, Schooffle, Cuntio, tubbad, Willin, Vanderhoos, Badey, Staley Civer, Borustein, Bumon Rachin, Benidey $\rightarrow ?$ gochassm?

Paloy - glia coat denbrites except at rynapses. It syappes, glia sean to envelope synop tic pairs A isolate them from symaptic groups on other denbrites.
showed slides with glia bladed in to show how abhinnitonsly it fitts spores botween dendites t arou teminals. yet, he is veady to allow fa 5 to 15% ertacallspace. Rolertson hos seen some nuich more open. He is dow some expto. To pusposely open Thmips osmotically.
Pappes - Borustemi, Cohen, Bemuatt
They have shown electrotorice rynappes in tissue culture of embrgo mouse costey.

Thy see ayor-oyomic
Soma-somatice
electhotonicic
Dorble minh hans come fogether o theis hydroplutic loyers sum to fuse at socalled electrotomic

stadead spupses here praunles on prexpurptic sile. Slectiotomic ones don't.
 Curtis of truthers chucked I mary points (Theatimospleere was dheody genii from cockturts of from "old goat" speaker previous). at and of teth, curtis turd to Habbod duvis the clopprog \& said, "and he does it all on ginger beer".

* could sort of join in The feeling worth Atubbord, oforevands, that they were well aware that gee does not lowe up ti all these pions plurooes, hit that, nevertheless, thy do adinirs hins, and that main of the prions phrases are worth empleasizis men if he doesi't bore up to Them. Th other words he does gone lop service to of even largely helios in the rizlot sort of values.

However, it was also apparent to me that Cuss's of Hubhond susvive at Conkers because (1) They ore very good, (2) Thy try to he independent (3) They are oble to laugh at the big man's mary fortes o they seem to do this all the time.

Theymustioned many times how improved they were with Loge fun kain z been the first to reply to the testshrift imitation of the priest to send in his manuscript. With rad to polit from Eccles sprizizes volume, they comments that he had given 900 copies away.

Ter were avers that offer Eccles had dove his hatchet jot on Gloze, he had premed Combs to dig on l the old records selevio to ny popes \& hal candied the Same mood power to that. They dot not seem to be aware of his attempts to blockipprublication; dodidut mention that to them either.
Lt was my impression that he evaded conversation with mes. Preounably ha feels gutting + does not with to he comprouted with ambararuif questions.
$11 / 16 / 64$
Setup new production rum.
64795.9241 like 9141 Wo with USD $=200$.
dree 64795.9244
and add missuriz card of 9144
set up 64796 . 1160 an test, need to satisfy CRT limen't

Received today letter from Ramon-Moliner He regards Aupted cells as "preamplifier" of the nervous system of he likes my sofety foetor argument for motany this a redundance device. He does not mention the ide a wrote to Pat Wall in 1961 regadrig protection aganost noisy endrizs, bert he does soy that neamplifiers should be slebur noise. He delsocalls attention to the granule cells of the olfactory, lobe as havist only doudrites and wonders how they night function. This makes mewanber if A showed not write tworshast notes to Science, one an this low noise-redundany idea (with references to personal communications) and one on the gramele cell idea.

Also, today, t was thinlangbout the application of ny denlutia motels to nome nets 4 the fo that one reels to set -up Specifier combinations of connections for specific pruposes. Ore though is ni correction with pattern recognition. One angle to be able to specify a potter of corrections that wowed circles of certain, robins, for example. Thurs,
$4 / 16 / 64$
dom strean from seceicing zone, there woved be a cell, or a gromp of alls which would sespond anky when the excitetions of leteral inlititions were such that they sotisf the coustrants for a circle of this diameter, whotever its precise location. Seflith dopperens group of cells for circle of differen diameter If wicle hohen or soy, a semicircle, this would be indicatod tur additional calls.
Try to define this,
Let Olo desiquate a cell respousible to circles of rodins ten units.

Digress for a momes, note tha denditic location of endroos vould pervit also The tamporal sequance along a curne to be detectod. At is postrkle that tro fubel o Wiesel lines have a directionol aspect that has not been loobred for.
Qrroy the prinian nerons (orsetind cells) $P_{11} P_{12} P_{13} P_{14} \ldots$
Eadi Secondory nenon coild, even, disnegadroy deublites, hane inpmit $S I_{k}=\sum_{i j} A_{i j} P_{i j}$
Circle secoublonis would he thore for widoch Aij of sizwficiol mog. coould hove ij poirs satisfyg crivalar loces The is flane. Thiswouldthe OK as presely formal, bo it would henre to gre more detail abous hour achere'd.
$11 / 17 / 64$
Remarkable coincidences
(1) Raman Moliner's lettr recerved yestesday rais d subljo of of gramile all which Gordon 8 Ihad discussed.
(2) middle of p. 66 , yesterday, postutated tempapal. sequerve. Todoy, new copry of If.lnysol. hos a popes Barlor, Hill कLovicls
"Rिtinal Oanalio flunal 173 377-407 (1964)
"Retinal Ganglion Cells Responding Selectively todirection and speed of mage motion ns the rabbit." - whod deals especially with This foint. cledeniz out.

Shonel do a little quantitatine
$11 / 19 / 64$ p.385 $10 \% /$ se
middefo 385 from Genter wist, diodaye occurs as goot epproodes the outer, moung frome The" off" pert to the "on" zone of the recepture fodd. as soow es it cromes the couts of the fiotd 9 moves avior hom cunter, the bischarge abropitly olowes ar stopo.
Anoff-cuter anits, the sequence is usudly the eroct reverre.
 amuation of $\varepsilon+2$ accouts for The not for divectron elly rucritutue. blach as white spot
botomp. 387 -sponi finiig nemou can be suppersed sith wroup direction.
$1111 / 64$ Tahkewith Bill Haginn on the telphone. He recommended that A write Horac Berlow Whois now at Berlealen. He dod not think the he had been much coreful thougit about denderitss. He thorght t stowed he in closer tanch with exp tad group
$11 / 20 / 64$
Here t am ajoin conprouted ly confliching priorities, interests q oplijations in my reseanch. A hove just written Ramon - Moliner se Fufted dendrites and Horace Barbow re se spatio- temporal patterns, bit nay fisi priosity should be to frïsh the work already $3 / 4$ firished. Also, thone to complete somethnig for the Tohyo Cougress. For This Cougren, my tomptation is to discuss spatio-temporal aspecto of synoptic intitition; attaript to sumuanje the ansuess to a variety of questions re additivity, Hfect on epspo "condu dono " shen peripherol, difference letwer I pulses 4 G bochgromat, ete. Other personal frionity is to write up the spike model. Tha folleomy list was mole wiite in Philadelphia at Newre as a fissue comprence

1. Basic fuatd poper (Gosdon now hes a copy of this ditto)
2. Ezre of Ceaine
3. Kinctie spithe model
4. gonctric foctors
5. Witral Cell with gondon (I and II)
6. I location - see Bookz degenerecies
7. Tree geveration
8. Aithen story
9. Nowadd spatio-temproral story re prattern discrumiotion
10. Asso, elaboration of gramile cell stong
11. Ramon-Wolnir of tafteq.

Now look bock at p.1 and p. 5 of Pook For older friite dunditi len stylf.
Abs Gose of hove heen talkny about a study group on control Theory and non-linear diff-egars.
$11 / 24 / 64$
Trawhenhanser presented a talk on his frog node experiment and computations done as sequel to those he did with Atupley.
Stimulated me to feel A should write at least a brief note on my model. Three justification, for singles model
(1) Appetite computotivans where fine points ore incidental
(2) We don't actually know tho H 4 IH prams for monualian nerve anguray. why conditions should one choose? Would that he any less usbitiary than my model? Frovesenhaness would recommen'l hos frog (verbtrate) data, with a temp. correction.
(3) Discovery of any deficiencies, re HAH I expo. wowed prouible added nisight on whole problem.

Framhenhoweser's main renewotion was that nude should respond coneotly to current pulses durniz spike. He also was concerned that curer safety foetor nigh he in correct.

Obviously, a brig presentation would home to touch upon some of These questions.

Now, mat return to 7 g. 4 of mitral proper \& consideration of coves trpherical syunaty (ff. Mp. $45+46$ of 34)

11/25 $611 / 27$
Worbeton Mitial Mannscript
clso got off letters to Fender a Godou Shepherd a begenove to Perkal Notes regarding Porkel's Rand Memo-RM-4132-NIH June 1964 A Digital-Comprets Model of Newelell functioning.
11/30/64
onproze 8, 19 is quantity of tronsmitter seleased
oupp $6 \not \subset 7$, depletion a restore of sesenvoir is like Liby \& North (appomdix
J. Neroppyniol 16 509-527 (1953)
appendix pp $521-525$
lug Qis inthotitory (Narke)
申. 9 incorrect - why use hangmuir obsosption isotherm. Trouble here is that he is uang the corong seference poteutial. p. 10 indicates awareners that something is wrong, but not whet the cause of the trouble is.
pp 16-17 discuss short comnigs
p. 37
corpuses of: "cherge" of offerent chaunel woth qi "charge" "delrased to portsymptic moubrone $^{\text {ni }}$
wouts rote of removal to be $q_{i} l^{-\lambda_{i} t}$ from offeres chamal of sayp this is to he equated with rate of angmentation of the cell potential Pretty fuzzy
Equatrois (17) anl (18) are micorsect
masumbily should he $\frac{d P}{d t}=-\lambda_{c} P+\sum_{\infty} \lambda_{i}\left(f_{i} / c\right) e^{-\lambda_{i} t}$
becausethen $c \int_{0}^{\infty} \lambda_{i}\left(q_{i} / c\right) e^{-\lambda_{i} t} d t=q_{i}$

4/30/64
Bit 1 would add tho for excitation, one should aichude The foctor $\left(\frac{E_{G}-V_{m}}{E_{G}-E_{r}}\right)=\left(1-V_{0}\right)$, and for inhibition one should include the factor $\left(\frac{E_{j}-V_{m}}{E_{E}-E_{r}}\right)=\left(\beta-V_{0}\right)$
Because, for very brief ΔE, my model gives postsynaptic
(EER Ven) ACASA
ham jain
beg (a)

$$
\begin{aligned}
\Delta\left\{C_{m} V_{m}-I_{m}\right\} & =\left(E_{\epsilon}-V_{m}\right) \Delta G_{\epsilon} \\
& =\left(E_{\epsilon}-V_{m}\right) \Delta G_{\epsilon} \Delta t \\
& =\left(E_{\epsilon}-V_{m}\right) G_{r} \Delta \varepsilon \Delta t \\
Q / C & =\left(E_{\epsilon}-V_{m}\right)\left(\frac{1}{\tau}\right) \Delta \varepsilon \Delta t \\
& =\left(E_{\epsilon}-V_{m}\right) \Delta \varepsilon \Delta(t / \tau)
\end{aligned}
$$

Also, if $q=\frac{Q}{C\left(E_{G}-E_{r}\right)}$, then

$$
q / c=\left(1-v_{0}\right) \Delta \varepsilon \Delta(t / \tau)
$$

This con be relates to eq. (vo) of Ojai popes es follows.
if $\Delta g=0=\Delta x$, and if $\Delta \dot{v}$ is cost for brief Δt
then $g / c=\Delta \dot{v} \Delta t=\Delta v$

$$
L\left(1-v_{0}\right) \Delta \varepsilon \frac{\Delta t}{\tau}
$$

However, now, to avoid usniz square morse or pulse of current, we try to use the notion that $Q=\int_{0}^{\infty} I d t=\int_{0}^{\infty} \lambda_{i} Q e^{-\lambda i t}=\left[-Q e^{-\lambda_{i} t}\right]_{0}^{\infty}=Q$

This is equivalent to flow from a neighboring comportment.

$$
5 \sec (x+1-35)=\sqrt{x}
$$

$$
\operatorname{Ta} A(-y-7)=\{\pi-\Delta, \Delta\} \Delta A
$$

$$
d A_{5}+A(x-27)=\varnothing
$$

$$
t \Delta 3 \Delta A(M-\Delta \lambda)=
$$

$$
\pm \triangle 3 \Delta\left(\frac{1}{5}\right)(-1-35)=2 p
$$

$$
(-1) \Delta 3 A(x-3)=
$$

welt, $\left(x-\frac{a}{4}\right)^{2}=\frac{2}{8}$ fi, anlo

$$
\left(y^{\prime}+1\right) \Delta 3 \Delta(a v-1)=18
$$

$$
\frac{\pi}{5} 3 \Delta(0 v-1) \geq
$$

$12 / 1 / 64$
But, having noted this much, should toy to become explicit about the shortcuts for dendritic model that A hone conaiberel before, bin not wilton down. Following points.
(A) when not at recording site, it may he good enough to have $\delta(t)$ of current which gives mistantaneans Q \& hence a sharp voltage change, honjhist tho Q depend upon $\left(1-V_{0}\right) \circ r\left(\beta-V_{0}\right)$
(B) This works ok when Eq g are in some compestiment, except That if 8 stays on, this hes to be nicluded ni decoy coust.
(C) In othu words, must clearly distinguish brief ε i f from sustained.
(D) Tusthemore, even when at site, one coned avoid abrupt voltage charge by baching offtrom δ current. Nonce possibilities Constant cunentor Δt, (t) iq $e^{-\lambda i t}$ as incorrectly mpheid My Perked, on (C) epact, a la conductors ie. proportional to $\left(E_{\epsilon}-V_{m}\right) \Delta \mathcal{E}$, (d) opproy. to this could be dove with linear change in v taken into account ide. instidly how forcer $\left(1-v_{0}\right)+$ chaygolinearly to $\left(1-\left(v_{0}+\Delta v\right)\right)$.
(9) Honer, if we conses posothlity that conductance prise need not be squarely tumid off, then (v) looks better again.

Note, for quire con lu tace pule M, curartgoes Ω, bine, if conduct tonne pulse Ω, cunerigo

$$
\text { if } \tau \dot{V}+V=\varepsilon(V-V)
$$

what unit be the time course of ε
such that $\varepsilon\left(V_{\epsilon}-V\right) \propto e^{-\alpha i t}$
Trouble is we hone the product of two variables here

$$
\begin{aligned}
& V \in L\{\varepsilon\}-L\{\varepsilon V\} \propto \frac{A}{s+\lambda_{i}} \\
\therefore & V_{e}(s+2 i) L\{\varepsilon\}=\left(s+\lambda_{i}\right) L\{\varepsilon V\}+A
\end{aligned}
$$

mote that $A \propto Q\left(V_{e}-V_{0}\right)$ seep 76
12/1/64
We hove

$$
\tau \dot{V}+V=\varepsilon\left(V_{\epsilon}-V\right)=A e^{-\lambda t}
$$

for $V(0)=0$, outer pair give $\bar{V}(s+\tau)=\frac{A}{s+\lambda}$

$$
\bar{v}=\frac{A}{(s+\lambda)(s+\tau}
$$

$$
\text { and } V_{0} e^{-t / \tau} \text { for namenoI.c. } \quad \therefore V(t)=\frac{A}{\lambda-1 / \tau}\left(e^{-t / \tau}-e^{-\lambda t}\right)
$$

Now, we can solve for $\varepsilon_{-\lambda t}$

$$
\left.\begin{array}{l}
\text { Solve for } \varepsilon \\
\qquad
\end{array}=\frac{A e^{-\lambda t}}{V_{\epsilon}-V}=\frac{e^{-\lambda t}}{\left(V_{\epsilon} / A\right)-\left(\frac{e^{-t / 2}-e^{2 t}}{\lambda-1 \varepsilon}\right)-\frac{V_{1}}{A} e^{-t / t}}\right)
$$

Not had toplot $e^{-\lambda t} \propto \perp$
$V \propto \sim$
$V_{E}-V_{\alpha}+$
$\varepsilon \propto$ himpdue to in denom.

See pill
$12 / 1 / 64$
To have $\varepsilon\left(V_{\epsilon}-V\right)=A e^{-\lambda t}$ One con get a solution of the following hind Don't yet know ang threg oban uniquars

$$
\begin{aligned}
& L \text { Suppose } \varepsilon=B e^{-a t}+F(t) \\
& \text { dredevtcdetat) } \varepsilon v_{\epsilon}=B V_{\epsilon} e^{-\lambda t}+V_{\epsilon} F(t)
\end{aligned}
$$

abore/con be satisfed if

Note prom of (10) of my $\theta_{j \text { jai poper, for suall } \Delta t \text { and with } \Delta y=0=\Delta \psi ~}^{\text {p }}$

$$
\text { get } \begin{aligned}
\Delta v & \cong \dot{v} \Delta t=(\dot{v})_{0-} \Delta t+(\Delta \dot{v})_{0} \Delta t \\
& =-\mu \Delta t\left(v_{0}-v_{s_{0}}\right)+\left(1-v_{0}\right) \Delta \varepsilon \Delta t / \tau \\
& \downarrow_{\text {thistamis zero if }} v_{0}=v_{s_{0}}
\end{aligned}
$$

Bataron wro eget $-\Delta t\left\{\frac{U_{0}}{\tau^{*}}-\frac{\varepsilon_{0}}{\tau}\right\}$

$$
=\left(v_{0-}-v_{s_{0}}\right)\left(\frac{\Delta t}{\tau^{2}}\right)
$$

where $\tau^{*}=\frac{\tau}{1+\varepsilon+f}$
in othe worls, this is the rate of prevors upproode to $V_{\text {SO- }}$

Elinfil64
$12 / 2 / 64$
As usual, dam tom between several projects of at the moment, hove spinning in my head, titles a opernng parogrophos for four different moiect, not to mention the Mitral Cell paper.
(1) for Phasiol Congers Abstract
"Potency of Synoptic Suhitition" coned be short title, and then go on to say that will discuss factors which determine potency in various soma-denbitic patio-temporal patterns of synoptic activity.
(2) Ramon- Moline will be in town today. Note with him coned begin. Tithe - Significance of Lanbilic Tufts of Secondary affen N Na "We beguin with the colorful remenk that the devisitic tufts holp these nanom ploy a pre-amplofies role. X futroduce preamplifier ward as suggestive or provocthie, cut add the the andogg is not meant to be carried too far.
(3) This interdependave of ε, I, V on $p_{p} 72473$ Could, of course,' choose to indre E have a gradual onset, hunt there is not too much point in this. Also, note That this type of I comes from neylchoni gits. anyhow; Actually, in general, should let E\&I\& V bee live sums of exponeritiols with different delays,
 λ taker core of smear of initial delay is ta hen care of sepravately. Quertion is, low fully can There smplificotions be note consistent with whole.
(4) Thoughts aton action Pokutial model popes (over)

Answer gonen in followng foragroples i bu first nube tios conments. The model to pe presented here
beloup to the formily of models that has been disansed mi fikbtugh. on
$12 / 264$
Porible title:
" A Simpler Mathematical Nerve Action Potential Model" It seams best to begin this paper by asknig and answering the following question: Why bother with alternative matheniatical models of nerve action potentials when the Hodghin-Huxly model has proved so successful? My answer is Thotionimpler
\leftarrow model can hove advantages for certain proposes, such as the follownig:
(1) There are many problems problems related to networks of neurons which are sufficiently complicated to justify the significant reduction in computation Fine that con be achieved by a simpler model; (2) Provided that the smipler model is qualitatively and even semi-quantitavely in agreement with the more complicated model, it merits consideration as a Fool in the investigation off tissues whose Holghin-tuply parameters hove not been determined (becouse then it is orly quale or semigigion). (3) An the sense of the class of models discussed by Fitgtugh, we may gain considerable insight from corrparisons off the adequacy of these models in vawons terms: it provides a way of distringuishng what is most essential from what may be accidental, special, or even misleading.
Actually, in paper, it map we derivable to have a brief peragnopple on each of the above; each with appropriate subtitle. seapopp. 69 these

Where Tr appuento thiger or thasmerthe quentity n sumeturg equirbent and λ is noesed to nomualize; $\lambda e^{-\lambda t}$

and λ is needed to normalize; $\lambda e^{-\lambda t}$

12/2/64 Todoy Give hadvisiter, De. Joel Brenner, mathematician now at Stamford Research. He is Tramalatar of anturecher a other important Rumen books of very widely able mathematician.

Apresented something on membrane models and also the degeneracies in the middle of Book 2. Wy 1963 -

Secesp.6/25/63
731,300
Summary $7 / 10 / 63$ series

Ar. Bremen said that There is a poper by COLLAR in Q. D. Moth. (620063) prob can he located in Math. Reviews with title "On Cross-Symmatric Matrices" which mon bear upon These degeneracies.
He thought this was worth writing up to brig on the various points.
To complete page 73 , note that $A \propto\left(V_{\in}-V_{0}\right)$
Then $V=V_{0} e^{-t / r}+A\left(\frac{e^{-t / \tau}-e^{-\lambda t}}{\lambda-1 / \tau}\right)$ and that, ingurene, $V_{0} \neq 0$
and $\varepsilon=\frac{e^{-\lambda t}}{\left(\frac{V_{\epsilon}-V_{0} e^{-t / r}}{A}\right)-\left(\frac{e^{-t / r}-e^{-\lambda t}}{\lambda-1 / r}\right)}$
And if we set $A=B *\left(\frac{V_{\epsilon}-V_{0}}{V_{\epsilon}}\right)$, we get the result

$$
\varepsilon=\frac{e^{-\lambda t}}{\frac{V_{\epsilon}}{B}\left(\frac{V_{\epsilon}-V_{0} e^{-t_{t} t}}{V_{\epsilon}-V_{0}}\right)-\left(\frac{e^{-t / \epsilon-e^{-\lambda t}}}{\lambda-t_{t}}\right)}
$$

where $B \propto A T /$ and has dimensions of voltage (scegpontiopoge)
$12 / 3 / 64$
Resolved on Explicit Strategy for Gelling propers written of reducing the nagging backlog.

* Deviate even A.M. Completely to writing. Avoid all distraction, such as mail, telephone, conversation and defer these to the afternoon. Story home if necessary to establish this routine. This A:M. regime should he devoted to one paper at a time. Recall the adurice of Tensell HIll. Nobaens that Dick Podolshy toll me the other dog that he hat asked A.V. til whether writing had hecome any easier for him over the years. The answer was no, he still hos to go through Hor 8 didfo, hisonly advantage over a meoplyite is that ha knows it will he hard work from the outset of prosunablys, this avoids some of the companion a discouragement of the neophyte.
Dust for the loll of it, could coll this new reade, project bade log \equiv GOLKCAB, and ty to tick of the papers as they are produced. If hight ideas come for other popers etc., as distractions, defer them to The oftemoon, but reserve the AM for the particular paper improcers.
As of now. Showed wok fist on Mitral paper (airguns con he lift to afomomes, ondefoned her text nu nt he premed forward). Then
 tabor what have.

Titlepage
p. 111 Wrenerimental secortuition
p. 1.243 fine prinat re 7 ig. $1-B$ collaterals etc.

* nagbe prell last sentence of p 1,3 ort of fine puñt.
p.2.1 The experimental secords.
p.3.1 Response charateristics at Turee deptho in two periods.
p.4.1 Syherical symmetry and syuchong

p.4.2 detaits on cone Ω et., then How of cursent corfuied within cones.
p.4.3 Sphasical equipotential contours and redil annent (perhaps shoull read isopotential surfaces)
4.4 gives equations (1) \& (2)
p.4.5 Puncture of spherical symnaty: extemel currant path.
\rightarrow The Nourophysiobical Records to be Analyped
\int Preantation of $\frac{\text { Fro Nerroghpiglosical frown }}{S \rightarrow}$
Part I Derciption of Data to be Analysed
Punctured
\rightarrow Part II Theretical Significance of Geometric Symmetry.
$12 / 4 / 64$
Yestes boy completet sereral pages of mitial poper ct also popered ritk drownog of 7 Vg . 4-A; moy wisti to miprove arions for curnent a then photoroph \& modify for puncture. Also put dashed lives unto Fig. 3. Where do we stand now s Completed up through cones, but not princtive anid external cusrent. The lost proge of ditto nught as well he retyped to modify and cleanap.
Perhaps onerall headrig of this Dission should le
Thenatical CONSEQUENCES OF GEOMETPK SYMHIPTRy to sepprate prom earlier expt. sections.
Nayt rection perhopsentitled Punctured Sphore: Extamd Path
done todoy
Nattewar rection: Poteutial dovider effect wote (2/7)64
Question: Should mixdle of p. 4.3 to middlep. 4.5 be defersed to an appendix to be treated with resistance??
$12 / 264$ Wrote up potential diovder affect; perhopso also sho anew eqped
Telephore call - Crent gfellt is in toom. He +Diter Lux are to see me This ator
Sookron o Gordon's droft, hone nour roplaced allof his section 4, exapp the par which (a) sepers to colnides niside cone, which mas better go mito forme legend. (b) instant of time which t have abredy deleted Fwire, and which should come at end of this section, now, altogether. (4.4) has been mipnowed upos? It mon prove promolle to present (b) together with $7 y .4 C^{\circ}$ and 7uges.

Ponotly here ready for new Division, is.
Pas III-Respone Deduced for Wital Wodies and Dendrites.

* Talkel with Crentsfeldt, Lux * Klee.

Thy study lat costey of are correlatrig intracellulor recordp with surfoce leads durho EEG spindles \& stitabinin convulsarar.
Sems to he a good correlation letween intracellular (comatic) epsp of spikes of suface positivit fittisk idea of ettracell. cursen Four deudrites to souna. Theywere mizzeled ly shamp suffoe $(t,-)$. Whon intracellular spuining was severe, A was able to point on that ofter pos, probobly couses this. This opparsitly wos a newridea to them. Nole: the are not doding wita mitery essp hit with bursts epspo \& bunsts of spites, hence ofter pos. is nurtiple.

1218164 Nitial Poper - stant to wiste poit Iت, or los It of prat IT
sutroduction
Part I - Electrophypiologral Records to be sutaproted
Par II - Theoretiral Siznuficance of Punctures Symmetry
Part III - Response for Witsol Bodies and Dendrites (zugs $5+6$)
Purt IV -Laten cies an gradients Computed for Mitral Model 7oge M\&8
moybe split $\left\{\begin{array}{l}\text { Pat IV } \\ \text { Latencies with Distance }\end{array}\right.$
Pat I) Radial Gradients of Potential
Pert I - Discusswon \& Recoustruction
atsonsition from II to III, may neef to prom ons Whot is hypothesis. Ahs, man reed outhine of computation

Picked up puotozroply Foday, - Gordor's exptl. series Abs Superposition foyure
Left to be done - redo7y. 3 with dashed linas plavar sabial Symmety diogroun.
 matrultsty

 \qquad $8+p^{4}$

IIthof

Maiturnimas 9 - tromora \qquad

 acuek outhés Nihn E. Etratas -wath et इ thet

$12 / 8 / 64$
Thins abon Col. Tech Lectures for Mos. 8ot9, as just confirmed by Fender. He requests titles, abstracts 4 reprints or class notes. Simplest to do as implied by correspondence

I overview of denbictir studies
II details
Did not finish - Apporitmine with Dentist.

$$
\begin{aligned}
& \text { for TK }=0.01 \\
& \begin{array}{lllllll}
.9041 & .4772 & .0963 & .0400 & .2036 & .2324 & .2884 \\
(7)
\end{array} \\
& \begin{array}{lllllll}
.9141 & .5272 & .1018 & .0446 & .2134 & .2236 & .2841
\end{array}(9) \\
& \begin{array}{llllll}
.9241 & .5083 \quad .0987 \quad .0334 & .1554 & .1816 & .2800(9)
\end{array} \\
& \text { for } 7 k=0.05 \\
& .9041 \begin{array}{l}
\text { petk } \\
.9431 \text {. } \\
.5861 \quad .3082 \quad .3003 .2754 .2658(r)
\end{array} \\
& .9141 \begin{array}{llll}
\text { bentreck } \\
.9343 & .6438 \quad .3309 \quad .2975 & .2840 .2664(9)
\end{array} \\
& .9241 .9372 .6031 \quad .2889 \quad .2559 .2460 .2452 \text { (} 9 \text {) }
\end{aligned}
$$

Insecond tooc coses, spothe ingt. 1 develops a little foster to a slightly smaller peak
.9041 spokenn (4) is at $K T=16 \quad T K=.15$ aupl $=.8115$
.9141
83
.164 later .7938 smaller
.9142
72.142 earlier
more shumert worthy
in 9241, hanig USD $=200$ +UD $=400$ makres ar thought dendritic caparity is reduced See over asthage Nholved.
$12 / 14 / 64$
The writing regin broke down last week, pertly because of insifficion sloop Mon.nught $\&$ because of dented marathon on Wednesday. Did not succeed in completing pages Softer two los Narbay) bi d did succeed in roughing on next part of thinking aton outhine. To work, the regime may need to have one weak rigidly on routine, follow d log week less reid gestation \& then bock again, but in any case, mornings largely devoted to writing or matters very closely related to writing.
12/14164 attemoon - plan recheck of WXR 796C which had trouble when first checked ($11 / 17 / 64$)

Something dod not work betwem mani prig of subroutines, conceivably, due to now angs etc. First, recheck the programs of ($1119 / 64$) for obvious ensor Notobrion
\therefore setupwith 64796.1201

$$
\begin{aligned}
& N T=6, \text { STEP }=2 \\
& I F T E S T=81 \\
& \text { FAB }=0
\end{aligned}
$$

60
Ass, veer bock to pp. $63+65$
$64795.9241+9244$ did not work out as expected.
Whit tour carefully compare $9041,9141,2241$
904510 denbitite origuidly.
9041 dodubitio gi

9141	10	n	n	25	400	5
9241	10	n	n	25	400	5

Assung Rin the same foroce ayan, som 1 , denbites

$$
\frac{U S D}{U S A}=N \frac{G D}{G A}=N\left(\frac{D D}{D A}\right)^{2}\left(\frac{L A}{L D}\right)
$$

tochang USD witho an other change, coneyraids to a charze sia $N_{0}($ eg. 9241)

$$
\begin{aligned}
\angle D=L A & =0.04 \text { min } \\
& =40 \mu
\end{aligned}
$$

$$
\begin{aligned}
& \angle D=L A=0.08 \mathrm{~mm} \\
&=80 \mu \\
& \frac{1}{U S A} \text { to } \frac{1}{5}
\end{aligned}
$$

1215164
Takeafuenh look at . $9041+9142$
Conclusion is the t discapancy is probbly athicutable to the dofference in fineners of l mmprig.
Furstcompere 9045 and 9041
tu 9045 have $N J D=10$ with $\Delta Z_{D}=0.1$, in. $U D=100$
$\Delta Z_{A}=0.2$, ie $U A=25$
Now, we urant the total denditic length to be $z L=0.5$

$$
\text { instodef } Z L=1.0
$$

Suppose we quadruple all P_{m} (aionel ssmante, oubintic) to achive this, levriig all diameters unchanged. note that UA $+U D$ conesp to μ r $\propto(\Delta z)^{-2} \propto \operatorname{Rm} \frac{d^{m}}{L^{2}}$ Cbearly, ifoll diametes and lenths unchanged, then all $\mu \pi$ unn the quadrupbed.
hypoth 9045

$$
\begin{aligned}
& U_{A} \\
& 25
\end{aligned}
$$

UDI	USA
100	2.5
400	10

USD	UP/A	$\frac{\text { USD }}{\text { DA }}$
100	4	40
400	4	40

« But now if we double all leng thes, so that there are conly 5 denderti epts. then UA \& UDore reducel 1 y a Gector of forn (bectanse of $\frac{1}{h^{2}}$ abive, or alternac wedy becance bo th core G doubbll and menhrue (habred), whereas USA ai USD areonly holod, becanke copocity of Soma remainis whe harged. This gores (9041) $\begin{array}{llllll}25 & 100 & 5 & 200 & 4 & 40\end{array}$

Viowly
$\begin{aligned} \text { Setrys rerm of } 9041 \text { with } D T & =0.002 \\ 9341 \text { with } U S A & =5.5\end{aligned}$
$12 / 15 / 64$
One could decile to lear LA at 80μ bu halve LD bock down to 40μ
Thistohes us from 9041 Coom 9141

$$
\begin{array}{ccccccc}
\text { IA } & \text { ID } & \text { USA } & \text { US } & \frac{\text { ID }}{O A} & \text { USA } \\
25 & 400 & 5 & 400 & 16 & 80
\end{array}
$$

which should be OK, except for humping dicicapany,
Alternatively suppose we changed only Pm of soma and dendrites li not axon.
Then stating from 9045, wavelet

$$
\begin{array}{cccc}
\text { VA USA } \\
25 & 400 & 10 & 400
\end{array}
$$

where LA airlLD would still be 40μ IN JD $=10$
Cub now, if we doubly LA to 80 , but leave $\angle D$ unburied, we halve USA ail quotes UA

$$
6.25 \quad 400 \quad 5 \quad 400
$$

which dopers from 9141 only ely pacts of 4 in UA
But this is not what in song ut it her
to miprone 9141 , coned fordde UA a USA or both to thy to make soma spathe a little easier and langer. Conelitry just USA $=5.5$ or 6 .

12/15/64

$$
\begin{array}{r}
\text { setup } 64795 \cdot 9410 \\
9411
\end{array}
$$

where 9410 is some as 9041 except that IFVE $=0$ and that $D T=0.002$
$N T=115$
2.5 per.001 NSTEP $=5$ phren 9041 was 1 per .001
W her
\therefore This will chide qualequacy off provide stop size in 40 \& 1 an provide with $914 /$ ant 9411 mew

9411 is similes to 9141 except the USA $=5.1$ as a fudge to tor to improve over 9141 to fit 9041

Chr patty in 64796.1201 sup. 82
as moredetailed test of WXR796C filet ot then phone Mora Haumuond \& learned that EQUIVALENCE must not he used for dunning variables of subroutine argunons. Thins bo must delete EQUNNALENCCE and restore carefully matched but non-identical arguments.
$12 / 17 / 64$ Parased to replect. Also, read symposiun on science of Publiz Poliry (7edPloc. 23 (\#61asI) 1964 Handler, Weinkerg, Forutain, Finer

Mutuel dependence of Research, Unvr. \& Gout is affact 4 problern is how tolices of condivitions be appraised for future. Requet 5 Nott. acod. "to enunciate the principles and philosoply which con rerve as a boric policy in the future conduct and adunnistiation of federal progrouns mi support of findarnental seseasch" The committe COSPUP chose to sesthict to support of fundomental sesearch in Universities.

Couchubd that grout progrom should remani backbore of sepporit. Criterion must continne to be scientifir moint. (mance sereach) Essential to use scientifir panels for this.
Covid problems to diversoon from old reseach to new research ly drofting proposals more corefully and morelroodly. - Tha tupes of suppoot con he ured to nupport week wists or bolster certain geogrophie oreas, or umpronen sientists
Responsititities of saientivts for suceers of geanto progsan
(1) consuen Fiems effor to achive steted prespose of grant (no other righo to the funds)
(2) serve consciemcionsh a wittingly on study sections
(3) obligation to Unv. Commith to holpwit' teachur as
1212764.9410 agrees perfectly with .9041

$$
D T=.0 \quad D T=.001
$$

Now con compare with
bothlawe NJD $=10$

9141
$2 \cdot \frac{3}{2} A=x$.
9411
9141

$12 / 21 / 64$
Call from Brunelle to delety superseld programs and subrontries from his ERTF.
Cursently using WXR795C mocloper for mitial cell podem.

Not pancensul WKR 796 C with $96 \mathrm{C}+97 \mathrm{C}, 95+82$ becane of Eqvirdence of dumm, arguments.

The compertmental series begon with WXR 701C $\frac{8 / 5 / 63}{71,72,73}$ Sueboel23

$$
780,781,783,785,786
$$

$$
\begin{aligned}
& 1039406 \\
& 7-701709
\end{aligned}
$$

UXR $79 / C$ worled well x produced grulladty sesies

$$
91 C, 92 C, 82 C
$$

WXR $6 / 1 \mathrm{C}$, treated spobpopulations of Mitha's renows, WXR 757 C kinctio of my spritesytem.

88

DJPP DJP Jitw DDPISXW LWmom tidly

 \qquad Cebos

 $\underset{80}{2 \rightarrow 8}, \operatorname{Dsp}, J 18$

12/23/64 Hear ry head cold today. Whee troth ache 4 fatigue yester day. Presumably much of depressed state of past few weeks has been related to low level toothache and virus. It has happened to me before in December. Obviondy cannot rise to any heights of creative writing, but might be able to go over the computer programs that were on BRT that Prunelle called about.

12/24/64 Obotalhed with Kandel o with Phil Nelson about their anomalous rectification \& the effed of Run or G_{j} change won rate of rise of esp? Wrote letter to handel.

12/28 Telbedwith Phil also ohout comparnor notes with Van Buran on the mattes of t and neg amplitudes ser additivity of units.
12/31/64 Got spreply no Satchel a also some reprints. Tooth ache sour under contsal with aspirin + Darvon, li this undoubtedly was a major factor in seduaniy moductivaty of per feer
weeks.
also received \& read Gordon's histological Mourn coif of popped This on to Node Marshall $12 / 29 / 64$, to review o Ahooiz with grow Hasumiser o Paul Hacfean

STANDARD EORM NO. 1012a
7 GAO 5300 1012-206

TRAVEL VOUCHER
MEMORANDUM

DEPARTMENT, BUREAU, OR ESTABLISHMENT			VOUCHER NO.
DEPARTMENT OF HEALTH, EDUCATTON, AND WELFARE, RHS			
			PAID BY
NMAHEHAA DRRESEItutes of Health Building 31 Room 9A-30 Bethesda, Maryland 20014			
BeFhCIAL DUTY STATION	RESIDENCE		
FOR TRAVEL AND OTHER EXPENSES $11 / 11 / 64^{\text {FROM }}$ (DATE	TRAVEL ADVANCE -0 -		CHECK NO.
	Outstanding		
PPLICABLE TRAVEL AUTHORIZATION(S) Amount to be applied			
$\begin{array}{l\|l} \text { PHS } & 3.75483 .1 \\ \text { PHS } 3.75483 .1 & 11 / 39644 \end{array}$	Balance to remain outstanding	\$	

TRANSPORTATION REQUESTS ISSUED

3 ACCOUNTINGCLASSIFLGATION (Appropriation symbol must be shown; other classification optional)

[^0]PREVIOUS TEMPORARY DUTY (Complete these blocks only if in travel status immediately prior to period covered by this voucher and if admin istratively required)

Question: since it is motable tho proper II will appear significant ly later thon proper I, perchps we should soy a little ahow gramble \& ayou of present one tentatine recoustinction

Why not?
poge 1.2 lô line? deoper
Consiber also Fig. 1-B
anpir onothenside \qquad

Bloded mital gives extrall peadr ≈ 0.30

The purpose of this bring note is to draw attention to The possible mutual significance of two different hives of recent newophysiological research. One is the theoretical study of spatio temporal patterns of synaptic excitation and inhibition delivered to dendritic trees (Rall, 1964). The other is the experimental demonstration of spotiotemporal selectivity ni the responses of ganglion cells in rabbit retma (Barlow, Hill, Levick, 1964).

Introduction
Pos I - Electroplypislogical Records to be Analysed
Par II - Theoretical Significance of Punctured Symmetry
Poi III - Response Deduced for Mitral Bodies o Dendrites Figs 5\$6 Deduce
Past IV - Latencies and gradients of Deduce l for Mitral Model tugs. 788
Poi V-Discussion
seep.86 of Book 4

reap hour to thy with thank

Calao, conellure somi of this in Gli. Tech untrod. tu this poper, I wush to seview the revolution that has been toknog flace in nemophypiot Thinting of es deudites. Me com staxd iof denbitivend forpyetivis loguni is 1956
coble line noperties. These Lavy studies lool to Qt Tho trie, there wias a rather anthonitofrne rewiplayie dogma (which, mim, in 1964, seems atbrect

Sutroduction:
(A short introduction will be added to the final droft. Here is a tentative stab at This.)

Neuroplupiologist.

Oar important objective of much neurophygsiological research is to understand how
the experimentally recorded transients of electric potential

This reese.

This paper presents the results of an effort at a theoretical reconstruction of experimentally recorded potentials, as a function of time and of deptith in the olfactory bulb.
see semi-anual report.

Whit is the relation

When the response of a population of recorded transient \rightarrow under experimentally reproducible conditions, it is

9064 enor ~二 BEB
notice that dabister furst voarsynchory
caused invertod eytracelulor)
picture
positty sern this essoneons Cose withow pitidrour of with
Coss sows facil to relvee syudrrous.

$$
V E F=40
$$

Propann could tew ent of. dithenity (halve C so that)

$$
\frac{U D T}{t w a l}=2 . * U D
$$

9041,9061 series needs to be redone with SHCF $=0$. to compore with SHCF $=0.5$
q $=0.2$

A more quantitative description of the direction and magnitude of extracellular current flow during mitral invasion is afforded by the graphs in Fig. 3. Here the potentials at different depths in the bulb are plotted for certain instants of time. The graph in the left covers three instants of time during Period I of Fig. 2; the graph on the left covers the time from the end of Period I through Period II.
 ? The earliest instant of/non-uniformity in the mitral membrane potential due to the invading antidromic impulse occurs at 1.2 msec , when the extracellular potential begins to move negative at the mitral somat (C in Fig 2) and positive at the dendritic termini (A in Fig. 2). This potential difference is heightened at 1.6 msec , with a correspondingly steep gradient of potential all along the dendritic shafts (slight irregularities can be neglected, as due to unitary responses superimposed on the wave responses). A similarly steep gradient occurs at 2.0 msec , when the negativity at the somata is near its peak, and even the dendritic periphery is at a negative extracellular potential.

A conventional interpretation of these events is that these times cover the progressive invasion of the antidromic impulse into the mitral cell bodes which are increasingly sinks for extracellular current flow. The dendrites are corresponding sources for these sinks, being at more positive (or less negative) extracellular potentials. Note that the dendrites are sources even at negative potentials; the polarity of an extracellular potential

3.2

$$
-2-
$$

has no necessary relation two to whether it is a source or a sink of extracellular current flow. We will show below that the positive polarity of the dendritic periphery can be merely an artifact of the recording set-up.

We thus conclude that at every point along the dendritic shafts from 1.2 to 2.0 msec ., current is flowing contwand through the dendritic membrane, depolarizing it. Whether this depolarization is purely passive, or whether it includes a regenerative response of the dendritic membrane, is the question which the mathematical model will attempt to answer.

The transition between Period I and Period II occurs at about 2.2 msec . as shown in the right-hand graph of Fig. 3. At this instant the dendritic periphery is continuing to depolarize while the mitral somata are beginning to repolarize. There is cons@anently no consistent potential gradient along the mitral cell, and hence little extracellular current flow. At 2.6 msec . the potential gradient is just opposite to that at 1.6 msec ., because the repolarizing somata are now more positive, and hence current $\$$ sources, for the still depolarized dendritic periphery. As the activity of the mitral g.e.c. dies away, the potential nonuniformity along the dendrites disappears. The extracellular potentials fall toward baseline, and at the end of the period, at 3.6 msec , the potential curve would be at baseline, with no extracellular current flow, except that now a new potential gradient is beginning because of the action of the granule g.e.c. (Rall and Shepherd, 1965).

Reruns ? $9041+9044$ to hone smaller dendritic steps.

Possine

5 denbictic
tominal peak ≈ 0.45

10 dendritic torwinal peak ≈ 0.25

1 flat facilitation asgoodor bethat then shoped श9.9031/ except pr priske of soma spike
facil $E_{\text {shoul be avided at soma cyt. }}$. supportane of control withont antidromic
$X J D=5$

Period II showel be
better
(hadplot . 9043)

$$
N J D=10
$$

Period IV appears very slons
Concep-- Soma spibe toht ot jeero with tomunds atten jeork

Ve initial artefoot is least when I.C. are flat and soma t peripharal V_{i} remain close together

Active
(501 10 denbitic cpts)
flat facil
\downarrow
shoped facilotation. (mentatisoma)

small amplitude
propagated dendsitic spihe.
\downarrow
Ve resemfles difforencior (nearly pral $t \neq-$) larger amplitudes.
? ninim ot mitermediatedeftho

[^0]: * Abbreviations for Pullman accommodations: MR, master room; DR, drawing room; CP, compartment; BR, bedroom; DSR, duplex single room; RM, roomette; DRM, duplex roomette; SOS, single occupancy section; LB, lower berth; UB, upper berth; LB-UB, lower and upper berth; S, seat.

